首页> 外文期刊>Image Processing, IEEE Transactions on >A Flexible Content-Adaptive Mesh-Generation Strategy for Image Representation
【24h】

A Flexible Content-Adaptive Mesh-Generation Strategy for Image Representation

机译:用于图像表示的灵活的内容自适应网格生成策略

获取原文
获取原文并翻译 | 示例

摘要

Based on the greedy-point removal (GPR) scheme of Demaret and Iske, a simple yet highly effective framework for constructing triangle-mesh representations of images, called GPRFS, is proposed. By using this framework and ideas from the error diffusion (ED) scheme (for mesh-generation) of Yang , a highly effective mesh-generation method, called GPRFS-ED, is derived and presented. Since the ED scheme plays a crucial role in our work, factors affecting the performance of this scheme are also studied in detail. Through experimental results, our GPRFS-ED method is shown to be capable of generating meshes of quality comparable to, and in many cases better than, the state-of-the-art GPR scheme, while requiring substantially less computation and memory. Furthermore, with our GPRFS-ED method, one can easily trade off between mesh quality and computational/memory complexity. A reduced-complexity version of the GPRFS-ED method (called GPRFS-MED) is also introduced to further demonstrate the computational/memory-complexity scalability of our GPRFS-ED method.
机译:基于Demaret和Iske的贪婪点去除(GPR)方案,提出了一种构造图像的三角形网格表示的简单而高效的框架,称为GPRFS。通过使用此框架和Yang的误差扩散(ED)方案(用于网格生成)的思想,得出并提出了一种高效的网格生成方法,称为GPRFS-ED。由于ED方案在我们的工作中起着至关重要的作用,因此还详细研究了影响该方案性能的因素。通过实验结果,我们的GPRFS-ED方法显示出能够生成与最新GPR方案相当甚至在许多情况下优于最新GPR方案的质量的网格,而所需的计算和内存却少得多。此外,使用我们的GPRFS-ED方法,可以轻松地在网格质量和计算/内存复杂性之间进行权衡。还介绍了GPRFS-ED方法的一种降低复杂度的版本(称为GPRFS-MED),以进一步证明我们的GPRFS-ED方法的计算/内存复杂性可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号