首页> 外文期刊>Image Processing, IEEE Transactions on >Illumination Recovery From Image With Cast Shadows Via Sparse Representation
【24h】

Illumination Recovery From Image With Cast Shadows Via Sparse Representation

机译:通过稀疏表示从具有阴影的图像中恢复照明

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose using sparse representation for recovering the illumination of a scene from a single image with cast shadows, given the geometry of the scene. The images with cast shadows can be quite complex and, therefore, cannot be well approximated by low-dimensional linear subspaces. However, it can be shown that the set of images produced by a Lambertian scene with cast shadows can be efficiently represented by a sparse set of images generated by directional light sources. We first model an image with cast shadows composed of a diffusive part (without cast shadows) and a residual part that captures cast shadows. Then, we express the problem in an $ell_1$-regularized least-squares formulation, with nonnegativity constraints (as light has to be non-negative at any point in space). This sparse representation enjoys an effective and fast solution thanks to recent advances in compressive sensing. In experiments on synthetic and real data, our approach performs favorably in comparison with several previously proposed methods.
机译:在本文中,我们建议使用稀疏表示从具有阴影的单个图像中恢复场景的照明,并考虑场景的几何形状。具有投射阴影的图像可能非常复杂,因此无法通过低维线性子空间很好地近似。但是,可以看出,由朗伯场景具有投射阴影生成的图像集可以有效地由定向光源生成的稀疏图像集来表示。我们首先对具有投影阴影的图像进行建模,该投影阴影由扩散部分(没有投影阴影)和捕获投影阴影的残差部分组成。然后,我们以非负约束(因为光在空间中的任何一点都必须是非负的),以$ ell_1 $正则化的最小二乘公式来表达问题。由于压缩感测的最新进展,这种稀疏表示法得到了有效且快速的解决方案。在合成和真实数据的实验中,我们的方法与以前提出的几种方法相比具有优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号