首页> 外文期刊>Image Processing, IEEE Transactions on >Compressive Sensing SAR Image Reconstruction Based on Bayesian Framework and Evolutionary Computation
【24h】

Compressive Sensing SAR Image Reconstruction Based on Bayesian Framework and Evolutionary Computation

机译:基于贝叶斯框架和进化计算的压缩感知SAR图像重建

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing (CS) is a theory that one may achieve an exact signal reconstruction from sufficient CS measurements taken from a sparse signal. However, in practical applications, the transform coefficients of SAR images usually have weak sparsity. Exactly reconstructing these images is very challenging. A new Bayesian evolutionary pursuit algorithm (BEPA) is proposed in this paper. A signal is represented as the sum of a main signal and some residual signals, and the generalized Gaussian distribution (GGD) is employed as the prior of the main signal and the residual signals. BEPA decomposes the residual iteratively and estimates the maximum a posteriori of the main signal and the residual signals by solving a sequence of subproblems to achieve the approximate CS reconstruction of the signal. Under the assumption of GGD with the parameter $0<1$ , the evolutionary algorithm (EA) is introduced to CS reconstruction for the first time. The better reconstruction performance can be achieved by searching the global optimal solutions of subproblems with EA. Numerical experiments demonstrate that the important features of SAR images (e.g., the point and line targets) can be well preserved by our algorithm, and the superior reconstruction performance can be obtained at the same time.
机译:压缩感测(CS)是一种理论,即可以从稀疏信号中获取足够的CS测量来实现精确的信号重建。但是,在实际应用中,SAR图像的变换系数通常具有较弱的稀疏性。准确地重建这些图像是非常具有挑战性的。提出了一种新的贝叶斯进化追踪算法(BEPA)。信号表示为主要信号和一些残差信号的总和,广义高斯分布(GGD)被用作主要信号和残差信号的先验。 BEPA迭代分解残差,并通过解决一系列子问题以实现信号的近似CS重构,来估计主信号和残差信号的最大后验。在GGD的参数为 $ 0 <1 $ 的假设下,将进化算法(EA)引入CS重建首次。通过使用EA搜索子问题的全局最优解,可以实现更好的重建性能。数值实验表明,通过我们的算法可以很好地保留SAR图像的重要特征(例如点和线目标),并且可以同时获得出色的重建性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号