首页> 外文期刊>Image Processing, IEEE Transactions on >Gradient Profile Prior and Its Applications in Image Super-Resolution and Enhancement
【24h】

Gradient Profile Prior and Its Applications in Image Super-Resolution and Enhancement

机译:梯度轮廓先验及其在图像超分辨率和增强中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel generic image prior—gradient profile prior, which implies the prior knowledge of natural image gradients. In this prior, the image gradients are represented by gradient profiles, which are 1-D profiles of gradient magnitudes perpendicular to image structures. We model the gradient profiles by a parametric gradient profile model. Using this model, the prior knowledge of the gradient profiles are learned from a large collection of natural images, which are called gradient profile prior. Based on this prior, we propose a gradient field transformation to constrain the gradient fields of the high resolution image and the enhanced image when performing single image super-resolution and sharpness enhancement. With this simple but very effective approach, we are able to produce state-of-the-art results. The reconstructed high resolution images or the enhanced images are sharp while have rare ringing or jaggy artifacts.
机译:在本文中,我们提出了一种新颖的通用图像先验-梯度轮廓先验,它暗示了自然图像梯度的先验知识。在此之前,图像梯度由梯度分布图表示,梯度分布图是垂直于图像结构的梯度量的一维分布图。我们通过参数梯度轮廓模型对梯度轮廓进行建模。使用该模型,可以从大量自然图像中获悉梯度轮廓的先验知识,这被称为梯度轮廓先验。基于此先验,我们提出了一种梯度场变换,以在执行单幅图像超分辨率和清晰度增强时约束高分辨率图像和增强图像的梯度场。通过这种简单但非常有效的方法,我们可以产生最先进的结果。重建的高分辨率图像或增强图像清晰,同时具有罕见的振铃或锯齿状伪像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号