首页> 外文期刊>Image Processing, IEEE Transactions on >Spatial Sparsity-Induced Prediction (SIP) for Images and Video: A Simple Way to Reject Structured Interference
【24h】

Spatial Sparsity-Induced Prediction (SIP) for Images and Video: A Simple Way to Reject Structured Interference

机译:图像和视频的空间稀疏性预测(SIP):一种消除结构化干扰的简单方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a prediction technique that is geared toward forming successful estimates of a signal based on a correlated anchor signal that is contaminated with complex interference. The corruption in the anchor signal involves intensity modulations, linear distortions, structured interference, clutter, and noise just to name a few. The proposed setup reflects nontrivial prediction scenarios involving images and video frames where statistically related data is rendered ineffective for traditional methods due to cross-fades, blends, clutter, brightness variations, focus changes, and other complex transitions. Rather than trying to solve a difficult estimation problem involving nonstationary signal statistics, we obtain simple predictors in linear transform domain where the underlying signals are assumed to be sparse. We show that these simple predictors achieve surprisingly good performance and seamlessly allow successful predictions even under complicated cases. None of the interference parameters are estimated as our algorithm provides completely blind and automated operation. We provide a general formulation that allows for nonlinearities in the prediction loop and we consider prediction optimal decompositions. Beyond an extensive set of results on prediction and registration, the proposed method is also implemented to operate inside a state-of-the-art compression codec and results show significant improvements on scenes that are difficult to encode using traditional prediction techniques.
机译:我们提出了一种预测技术,该技术旨在基于被复杂干扰污染的相关锚信号来形成信号的成功估计。锚信号中的破坏包括强度调制,线性失真,结构性干扰,杂波和噪声,仅举几例。所提出的设置反映了涉及图像和视频帧的非平凡的预测场景,其中由于交叉淡入淡出,混合,混乱,亮度变化,焦点变化和其他复杂转换,使得统计相关数据对于传统方法无效。我们没有尝试解决涉及非平稳信号统计的困难估计问题,而是获得了线性变换域中的简单预测变量,其中基础信号被认为是稀疏的。我们证明了这些简单的预测器取得了令人惊讶的良好性能,并且即使在复杂的情况下也可以无缝地成功进行预测。由于我们的算法提供了完全盲目和自动化的操作,因此没有干扰参数可以估算。我们提供了一个允许在预测环路中实现非线性的一般公式,并考虑了预测最优分解。除了关于预测和配准的大量结果集之外,所提出的方法还可以在最新的压缩编解码器内运行,并且结果显示了对使用传统预测技术难以编码的场景的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号