首页> 外文期刊>Image Processing, IEEE Transactions on >Iterative Shrinkage Approach to Restoration of Optical Imagery
【24h】

Iterative Shrinkage Approach to Restoration of Optical Imagery

机译:光学图像复原的迭代收缩法

获取原文
获取原文并翻译 | 示例

摘要

The problem of reconstruction of digital images from their degraded measurements is regarded as a problem of central importance in various fields of engineering and imaging sciences. In such cases, the degradation is typically caused by the resolution limitations of an imaging device in use and/or by the destructive influence of measurement noise. Specifically, when the noise obeys a Poisson probability law, standard approaches to the problem of image reconstruction are based upon using fixed-point algorithms which follow the methodology first proposed by Richardson and Lucy. The practice of using these methods, however, shows that their convergence properties tend to deteriorate at relatively high noise levels. Accordingly, in the present paper, a novel method for denoising and/or deblurring of digital images corrupted by Poisson noise is introduced. The proposed method is derived under the assumption that the image of interest can be sparsely represented in the domain of a linear transform. Consequently, a shrinkage-based iterative procedure is proposed, which guarantees the solution to converge to the global maximizer of an associated maximum a posteriori criterion. It is shown in a series of computer-simulated experiments that the proposed method outperforms a number of existing alternatives in terms of stability, precision, and computational efficiency.
机译:从其降级的测量重建数字图像的问题被认为是在工程和成像科学的各个领域中至关重要的问题。在这种情况下,降级通常是由使用中的成像设备的分辨率限制和/或由于测量噪声的破坏性影响引起的。具体而言,当噪声遵循泊松概率定律时,解决图像重建问题的标准方法是基于使用固定点算法的,该算法遵循Richardson和Lucy首先提出的方法。然而,使用这些方法的实践表明,它们的会聚特性在相对较高的噪声水平下趋于恶化。因此,在本文中,介绍了一种用于对由于泊松噪声而损坏的数字图像进行降噪和/或去模糊的新颖方法。所提出的方法是在可以在线性变换的域中稀疏表示感兴趣的图像的前提下得出的。因此,提出了一种基于收缩的迭代过程,该过程保证了解收敛到关联最大值的后验准则的全局最大化子。在一系列计算机模拟实验中表明,在稳定性,精度和计算效率方面,该方法优于许多现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号