首页> 外文期刊>Image Processing, IEEE Transactions on >Adaptive Kalman Filtering for Histogram-Based Appearance Learning in Infrared Imagery
【24h】

Adaptive Kalman Filtering for Histogram-Based Appearance Learning in Infrared Imagery

机译:自适应卡尔曼滤波用于基于直方图的红外图像外观学习

获取原文
获取原文并翻译 | 示例

摘要

Targets of interest in video acquired from imaging infrared sensors often exhibit profound appearance variations due to a variety of factors, including complex target maneuvers, ego-motion of the sensor platform, background clutter, etc., making it difficult to maintain a reliable detection process and track lock over extended time periods. Two key issues in overcoming this problem are how to represent the target and how to learn its appearance online. In this paper, we adopt a recent appearance model that estimates the pixel intensity histograms as well as the distribution of local standard deviations in both the foreground and background regions for robust target representation. Appearance learning is then cast as an adaptive Kalman filtering problem where the process and measurement noise variances are both unknown. We formulate this problem using both covariance matching and, for the first time in a visual tracking application, the recent autocovariance least-squares (ALS) method. Although convergence of the ALS algorithm is guaranteed only for the case of globally wide sense stationary process and measurement noises, we demonstrate for the first time that the technique can often be applied with great effectiveness under the much weaker assumption of piecewise stationarity. The performance advantages of the ALS method relative to the classical covariance matching are illustrated by means of simulated stationary and nonstationary systems. Against real data, our results show that the ALS-based algorithm outperforms the covariance matching as well as the traditional histogram similarity-based methods, achieving sub-pixel tracking accuracy against the well-known AMCOM closure sequences and the recent SENSIAC automatic target recognition dataset.
机译:从成像红外传感器获取的视频中,感兴趣的目标通常会由于多种因素而表现出深刻的外观变化,这些因素包括复杂的目标操作,传感器平台的自我运动,背景杂波等,从而难以维持可靠的检测过程并在较长的时间内跟踪锁定。克服此问题的两个关键问题是如何表示目标以及如何在线了解目标的外观。在本文中,我们采用了一种最新的外观模型,该模型可以估计像素强度直方图以及前景和背景区域中局部标准差的分布,以实现鲁棒的目标表示。然后将外观学习转换为自适应卡尔曼滤波问题,其中过程和测量噪声方差均未知。我们使用协方差匹配和最近一次自协方差最小二乘(ALS)方法在视觉跟踪应用中首次提出了这个问题。尽管仅在全局范围内的平稳过程和测量噪声的情况下才可以保证ALS算法的收敛性,但我们首次证明,在分段平稳性较弱的假设下,该技术通常可以有效地应用。相对于经典协方差匹配,ALS方法的性能优势通过仿真的平稳和非平稳系统得到了说明。针对真实数据,我们的结果表明,基于ALS的算法优于协方差匹配以及基于传统直方图相似度的方法,可针对著名的AMCOM闭合序列和最新的SENSIAC自动目标识别数据集实现亚像素跟踪精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号