首页> 外文期刊>Image Processing, IEEE Transactions on >Localizing Text in Scene Images by Boundary Clustering, Stroke Segmentation, and String Fragment Classification
【24h】

Localizing Text in Scene Images by Boundary Clustering, Stroke Segmentation, and String Fragment Classification

机译:通过边界聚类,笔划分割和字符串片段分类对场景图像中的文本进行本地化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel framework to extract text regions from scene images with complex backgrounds and multiple text appearances. This framework consists of three main steps: boundary clustering (BC), stroke segmentation, and string fragment classification. In BC, we propose a new bigram-color-uniformity-based method to model both text and attachment surface, and cluster edge pixels based on color pairs and spatial positions into boundary layers. Then, stroke segmentation is performed at each boundary layer by color assignment to extract character candidates. We propose two algorithms to combine the structural analysis of text stroke with color assignment and filter out background interferences. Further, we design a robust string fragment classification based on Gabor-based text features. The features are obtained from feature maps of gradient, stroke distribution, and stroke width. The proposed framework of text localization is evaluated on scene images, born-digital images, broadcast video images, and images of handheld objects captured by blind persons. Experimental results on respective datasets demonstrate that the framework outperforms state-of-the-art localization algorithms.
机译:在本文中,我们提出了一种新颖的框架来从具有复杂背景和多个文本外观的场景图像中提取文本区域。该框架包括三个主要步骤:边界聚类(BC),笔划分段和字符串片段分类。在不列颠哥伦比亚省,我们提出了一种新的基于bigram颜色均匀性的方法来对文本和附件表面进行建模,并基于颜色对和空间位置将边界像素聚类为边界层。然后,通过颜色分配在每个边界层执行笔划分割以提取候选字符。我们提出了两种将文本笔划的结构分析与颜色分配相结合并滤除背景干扰的算法。此外,我们基于基于Gabor的文本特征设计了一个健壮的字符串片段分类。从梯度,笔划分布和笔划宽度的特征图获得特征。在场景图像,天生数字图像,广播视频图像以及由盲人捕获的手持对象的图像上评估了建议的文本本地化框架。在各个数据集上的实验结果表明,该框架优于最新的本地化算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号