首页> 外文期刊>Image Processing, IEEE Transactions on >Weighted Similarity-Invariant Linear Algorithm for Camera Calibration With Rotating 1-D Objects
【24h】

Weighted Similarity-Invariant Linear Algorithm for Camera Calibration With Rotating 1-D Objects

机译:旋转一维物体的摄像机标定的加权相似不变线性算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a weighted similarity-invariant linear algorithm for camera calibration with rotating 1-D objects is proposed. First, we propose a new estimation method for computing the relative depth of the free endpoint on the 1-D object and prove its robustness against noise compared with those used in previous literature. The introduced estimator is invariant to image similarity transforms, resulting in a similarity-invariant linear calibration algorithm which is slightly more accurate than the well-known normalized linear algorithm. Then, we use the reciprocals of the standard deviations of the estimated relative depths from different images as the weights on the constraint equations of the similarity-invariant linear calibration algorithm, and propose a weighted similarity-invariant linear calibration algorithm with higher accuracy. Experimental results on synthetic data as well as on real image data show the effectiveness of our proposed algorithm.
机译:本文提出了一种基于加权一维不变线性算法的旋转一维目标相机标定方法。首先,我们提出了一种新的估算方法,用于计算一维物体上自由端点的相对深度,并与以前的文献相比证明了其抗噪声的鲁棒性。引入的估计器对于图像相似度变换是不变的,从而导致相似度不变的线性校准算法比公知的归一化线性算法更精确。然后,将估计的相对深度的标准差的倒数作为不同不变性线性校准算法的约束方程的权重,提出了一种精度更高的加权不变性线性校准算法。在合成数据和真实图像数据上的实验结果证明了我们提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号