首页> 外文期刊>Image Processing, IEEE Transactions on >Coupled Kernel Embedding for Low-Resolution Face Image Recognition
【24h】

Coupled Kernel Embedding for Low-Resolution Face Image Recognition

机译:耦合内核嵌入用于低分辨率人脸图像识别

获取原文
获取原文并翻译 | 示例

摘要

Practical video scene and face recognition systems are sometimes confronted with low-resolution (LR) images. The faces may be very small even if the video is clear, thus it is difficult to directly measure the similarity between the faces and the high-resolution (HR) training samples. Face recognition based on traditional super-resolution (SR) methods usually have limited performance because the target of SR may not be consistent with that of classification, and time-consuming SR algorithms are not suitable for real-time applications. In this paper, a new feature extraction method called coupled kernel embedding (CKE) is proposed for LR face recognition without any SR preprocessing. In this method, the final kernel matrix is constructed by concatenating two individual kernel matrices in the diagonal direction, and the (semi)positively definite properties are preserved for optimization. CKE addresses the problem of comparing multimodal data that are difficult for conventional methods in practice due to the lack of an efficient similarity measure. Particularly, different kernel types (e.g., linear, Gaussian, polynomial) can be integrated into a uniform optimization objective, which cannot be achieved by simple linear methods. CKE solves this problem by minimizing the dissimilarities captured by their kernel Gram matrices in the LR and HR spaces. In the implementation, the nonlinear objective function is minimized by a generalized eigenvalue decomposition. Experiments on benchmark and real databases show that our CKE method indeed improves the recognition performance.
机译:实用的视频场景和面部识别系统有时会遇到低分辨率(LR)图像。即使视频清晰,人脸也可能很小,因此很难直接测量人脸与高分辨率(HR)训练样本之间的相似度。基于传统超分辨率(SR)方法的面部识别通常性能有限,因为SR的目标可能与分类的目标不一致,并且耗时的SR算法不适合实时应用。本文提出了一种新的特征提取方法,称为耦合核嵌入(CKE),用于无需任何SR预处理的LR人脸识别。在这种方法中,通过在对角线方向上连接两个单独的内核矩阵来构造最终的内核矩阵,并且保留(半)正定属性以进行优化。 CKE解决了比较多峰数据的问题,由于缺乏有效的相似性度量,多峰数据在实践中对于常规方法是困难的。特别地,可以将不同的核类型(例如,线性,高斯,多项式)集成到统一的优化目标中,这是无法通过简单的线性方法来实现的。 CKE通过最小化其在LR和HR空间中的内核Gram矩阵捕获的差异来解决此问题。在实现中,非线性目标函数通过广义特征值分解最小化。在基准数据库和真实数据库上进行的实验表明,我们的CKE方法确实提高了识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号