首页> 外文期刊>Image Processing, IEEE Transactions on >A Parametric Level-Set Approach to Simultaneous Object Identification and Background Reconstruction for Dual-Energy Computed Tomography
【24h】

A Parametric Level-Set Approach to Simultaneous Object Identification and Background Reconstruction for Dual-Energy Computed Tomography

机译:用于双能计算机断层扫描的同时目标识别和背景重建的参数水平集方法

获取原文
获取原文并翻译 | 示例

摘要

Dual-energy computerized tomography has gained great interest because of its ability to characterize the chemical composition of a material rather than simply providing relative attenuation images as in conventional tomography. The purpose of this paper is to introduce a novel polychromatic dual-energy processing algorithm, with an emphasis on detection and characterization of piecewise constant objects embedded in an unknown cluttered background. Physical properties of the objects, particularly the Compton scattering and photoelectric absorption coefficients, are assumed to be known with some level of uncertainty. Our approach is based on a level-set representation of the characteristic function of the object and encompasses a number of regularization techniques for addressing both the prior information we have concerning the physical properties of the object and the fundamental physics-based limitations associated with our ability to jointly recover the Compton scattering and photoelectric absorption properties of the scene. In the absence of an object with appropriate physical properties, our approach returns a null characteristic function and, thus, can be viewed as simultaneously solving the detection and characterization problems. Unlike the vast majority of methods that define the level-set function nonparametrically, i.e., as a dense set of pixel values, we define our level set parametrically via radial basis functions and employ a Gauss-Newton-type algorithm for cost minimization. Numerical results show that the algorithm successfully detects objects of interest, finds their shape and location, and gives an adequate reconstruction of the background.
机译:由于双能计算机断层扫描能够表征材料的化学成分,而不是像常规断层扫描那样简单地提供相对衰减图像,因此倍受关注。本文的目的是介绍一种新颖的多色双能量处理算法,重点是检测和表征嵌入未知杂乱背景中的分段常数对象。假定物体的物理性质(特别是康普顿散射系数和光电吸收系数)在一定程度上具有不确定性。我们的方法基于对象特征功能的水平集表示,并且包含多种正则化技术,可用于解决我们已有的有关对象物理特性的信息以及与我们能力相关的基于物理的基本限制共同恢复康普顿散射和光电吸收现场的特性。在没有具有适当物理特性的对象的情况下,我们的方法将返回空特征函数,因此可以视为同时解决检测和表征问题。与绝大多数非参数地定义水平集函数(即作为密集的像素值的方法)的方法不同,我们通过径向基函数以参量定义我们的水平集,并采用Gauss-Newton型算法来最小化成本。数值结果表明,该算法成功地检测出感兴趣的对象,找到了它们的形状和位置,并对背景进行了适当的重建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号