首页> 外文期刊>Image Processing, IEEE Transactions on >Hierarchical Oriented Predictions for Resolution Scalable Lossless and Near-Lossless Compression of CT and MRI Biomedical Images
【24h】

Hierarchical Oriented Predictions for Resolution Scalable Lossless and Near-Lossless Compression of CT and MRI Biomedical Images

机译:用于CT和MRI生物医学图像分辨率可扩展的无损和近无损压缩的分层定向预测

获取原文
获取原文并翻译 | 示例

摘要

We propose a new hierarchical approach to resolution scalable lossless and near-lossless (NLS) compression. It combines the adaptability of DPCM schemes with new hierarchical oriented predictors to provide resolution scalability with better compression performances than the usual hierarchical interpolation predictor or the wavelet transform. Because the proposed hierarchical oriented prediction (HOP) is not really efficient on smooth images, we also introduce new predictors, which are dynamically optimized using a least-square criterion. Lossless compression results, which are obtained on a large-scale medical image database, are more than 4% better on CTs and 9% better on MRIs than resolution scalable JPEG-2000 (J2K) and close to nonscalable CALIC. The HOP algorithm is also well suited for NLS compression, providing an interesting rate-distortion tradeoff compared with JPEG-LS and equivalent or a better PSNR than J2K for a high bit rate on noisy (native) medical images.
机译:我们提出了一种新的分层方法来解决可伸缩的无损和近无损(NLS)压缩问题。它结合了DPCM方案的适应性和新的面向分层的预测器,以提供比常规的分层插值预测器或小波变换更好的压缩性能的分辨率可伸缩性。由于建议的面向层次的预测(HOP)在平滑图像上并不是真正有效,因此我们还引入了新的预测器,这些预测器使用最小二乘准则进行了动态优化。在大型医学图像数据库上获得的无损压缩结果,与分辨率可扩展的JPEG-2000(J2K)相比,在CT上的无损压缩效果好4%,在MRI上的无损压缩效果好9%,并且接近不可缩放的CALIC。 HOP算法也非常适合NLS压缩,与嘈杂的(本机)医学图像上的高比特率相比,与JPEG-LS相比,它提供了有趣的速率失真折衷,并且与J2K相比具有同等或更好的PSNR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号