首页> 外文期刊>Image Processing, IEEE Transactions on >Multiview Deblurring for 3-D Images from Light-Sheet-Based Fluorescence Microscopy
【24h】

Multiview Deblurring for 3-D Images from Light-Sheet-Based Fluorescence Microscopy

机译:基于光片荧光显微镜的3D图像多视图去模糊

获取原文
获取原文并翻译 | 示例

摘要

We propose an algorithm for 3-D multiview deblurring using spatially variant point spread functions (PSFs). The algorithm is applied to multiview reconstruction of volumetric microscopy images. It includes registration and estimation of the PSFs using irregularly placed point markers (beads). We formulate multiview deblurring as an energy minimization problem subject to L1-regularization. Optimization is based on the regularized Lucy–Richardson algorithm, which we extend to deal with our more general model. The model parameters are chosen in a profound way by optimizing them on a realistic training set. We quantitatively and qualitatively compare with existing methods and show that our method provides better signal-to-noise ratio and increases the resolution of the reconstructed images.
机译:我们提出了一种使用空间变异点扩展函数(PSF)进行3-D多视图去模糊的算法。该算法适用于体积显微镜图像的多视图重建。它包括使用不规则放置的点标记(珠子)对PSF进行配准和估计。我们将多视图去模糊公式化为受L1正则化约束的能量最小化问题。优化基于正则化的Lucy-Richardson算法,我们对其进行了扩展以处理更通用的模型。通过在现实的训练集上优化模型参数,可以深刻地选择模型参数。我们在定量和定性上与现有方法进行比较,结果表明我们的方法提供了更好的信噪比并提高了重建图像的分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号