首页> 外文期刊>Image Processing, IEEE Transactions on >: A Spectral and Spatial Measure of Local Perceived Sharpness in Natural Images
【24h】

: A Spectral and Spatial Measure of Local Perceived Sharpness in Natural Images

机译::自然图像中局部感知清晰度的光谱和空间度量

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an algorithm designed to measure the local perceived sharpness in an image. Our method utilizes both spectral and spatial properties of the image: For each block, we measure the slope of the magnitude spectrum and the total spatial variation. These measures are then adjusted to account for visual perception, and then, the adjusted measures are combined via a weighted geometric mean. The resulting measure, i.e., $S_{3}$ (spectral and spatial sharpness), yields a perceived sharpness map in which greater values denote perceptually sharper regions. This map can be collapsed into a single index, which quantifies the overall perceived sharpness of the whole image. We demonstrate the utility of the $S_{3}$ measure for within-image and across-image sharpness prediction, no-reference image quality assessment of blurred images, and monotonic estimation of the standard deviation of the impulse response used in Gaussian blurring. We further evaluate the accuracy of $S_{3}$ in local sharpness estimation by comparing $S_{3}$ maps to sharpness maps generated by human subjects. We show that $S_{3}$ can generate sharpness maps, which are highly correlated with the human-subject maps.
机译:本文提出了一种旨在测量图像中局部感知清晰度的算法。我们的方法利用了图像的光谱和空间特性:对于每个块,我们测量幅度谱的斜率和总的空间变化。然后调整这些度量以解决视觉感知,然后通过加权几何平均值将调整后的度量合并。结果度量,即$ S_ {3} $(光谱和空间清晰度)会产生一个感知的清晰度图,其中更大的值表示感知上更清晰的区域。可以将此地图折叠为一个索引,该索引可以量化整个图像的整体清晰度。我们演示了$ S_ {3} $度量用于图像内和跨图像清晰度预测,模糊图像的无参考图像质量评估以及高斯模糊中脉冲响应的标准偏差的单调估计的实用性。我们通过将$ S_ {3} $映射与人类受试者生成的清晰度图进行比较,进一步评估$ S_ {3} $在局部清晰度估计中的准确性。我们证明了$ S_ {3} $可以生成清晰度图,该清晰度图与人类对象图高度相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号