首页> 外文期刊>Image Processing, IEEE Transactions on >An Online Learning Approach to Occlusion Boundary Detection
【24h】

An Online Learning Approach to Occlusion Boundary Detection

机译:遮挡边界检测的在线学习方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel online learning-based framework for occlusion boundary detection in video sequences. This approach does not require any prior training and instead “learns” occlusion boundaries by updating a set of weights for the online learning Hedge algorithm at each frame instance. Whereas previous training-based methods perform well only on data similar to the trained examples, the proposed method is well suited for any video sequence. We demonstrate the performance of the proposed detector both for the CMU data set, which includes hand-labeled occlusion boundaries, and for a novel video sequence. In addition to occlusion boundary detection, the proposed algorithm is capable of classifying occlusion boundaries by angle and by whether the occluding object is covering or uncovering the background.
机译:我们提出了一种新颖的基于在线学习的视频序列遮挡边界检测框架。这种方法不需要任何事先训练,而是通过在每个帧实例上为在线学习对冲算法更新一组权重来“学习”遮挡边界。以前的基于训练的方法仅在类似于训练示例的数据上表现良好,而提出的方法非常适合任何视频序列。我们展示了针对CMU数据集(包括手动标记的遮挡边界)和新型视频序列的建议检测器的性能。除了遮挡边界检测之外,所提出的算法还能够通过角度以及遮挡对象是遮盖背景还是遮盖背景来对遮挡边界进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号