首页> 外文期刊>Image Processing, IEEE Transactions on >Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images
【24h】

Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images

机译:非参数贝叶斯字典学习用于噪声图像和不完整图像的分析

获取原文
获取原文并翻译 | 示例

摘要

Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an appropriate dictionary for the data under test and also for image recovery. In the context of compressive sensing, significant improvements in image recovery are manifested using learned dictionaries, relative to using standard orthonormal image expansions. The compressive-measurement projections are also optimized for the learned dictionary. Additionally, we consider simpler (incomplete) measurements, defined by measuring a subset of image pixels, uniformly selected at random. Spatial interrelationships within imagery are exploited through use of the Dirichlet and probit stick-breaking processes. Several example results are presented, with comparisons to other methods in the literature.
机译:考虑使用非参数贝叶斯方法基于压缩,不完整和/或有噪声的测量来恢复图像。截断的beta-Bernoulli过程用于为测试中的数据以及图像恢复推断适当的字典。在压缩感测的情况下,相对于使用标准正交图像展开,使用学习词典可以显着改善图像恢复。压缩测量预测也针对学习的词典进行了优化。另外,我们考虑了更简单(不完整)的测量,这是通过测量随机统一选择的图像像素子集来定义的。图像中的空间相互关系是通过使用狄利克雷(Dirichlet)和概率断裂技术来开发的。给出了几个示例结果,并与文献中的其他方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号