首页> 外文期刊>Image Processing, IEEE Transactions on >Integrating Segmentation Information for Improved MRF-Based Elastic Image Registration
【24h】

Integrating Segmentation Information for Improved MRF-Based Elastic Image Registration

机译:集成分割信息以改进基于MRF的弹性图像配准

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a method to exploit segmentation information for elastic image registration using a Markov-random-field (MRF)-based objective function. MRFs are suitable for discrete labeling problems, and the labels are defined as the joint occurrence of displacement fields (for registration) and segmentation class probability. The data penalty is a combination of the image intensity (or gradient information) and the mutual dependence of registration and segmentation information. The smoothness is a function of the interaction between the defined labels. Since both terms are a function of registration and segmentation labels, the overall objective function captures their mutual dependence. A multiscale graph-cut approach is used to achieve subpixel registration and reduce the computation time. The user defines the object to be registered in the floating image, which is rigidly registered before applying our method. We test our method on synthetic image data sets with known levels of added noise and simulated deformations, and also on natural and medical images. Compared with other registration methods not using segmentation information, our proposed method exhibits greater robustness to noise and improved registration accuracy.
机译:在本文中,我们提出了一种基于马尔可夫随机场(MRF)的目标函数,利用分割信息进行弹性图像配准的方法。 MRF适用于离散标注问题,并且标注被定义为位移场(用于配准)和分段类别概率的联合出现。数据损失是图像强度(或梯度信息)以及配准和分割信息的相互依赖性的组合。平滑度是所定义标签之间相互作用的函数。由于这两个术语都是配准和分段标签的函数,因此总体目标函数捕获了它们的相互依赖性。多尺度图割方法用于实现子像素配准并减少计算时间。用户在浮动图像中定义要注册的对象,该对象在应用我们的方法之前已被严格注册。我们在添加噪声和模拟变形已知水平的合成图像数据集以及自然和医学图像上测试我们的方法。与不使用分割信息的其他配准方法相比,我们提出的方法对噪声具有更高的鲁棒性并提高了配准精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号