【24h】

Sparse Texture Active Contour

机译:稀疏纹理主动轮廓

获取原文
获取原文并翻译 | 示例

摘要

In image segmentation, we are often interested in using certain quantities to characterize the object, and perform the classification based on criteria such as mean intensity, gradient magnitude, and responses to certain predefined filters. Unfortunately, in many cases such quantities are not adequate to model complex textured objects. Along a different line of research, the sparse characteristic of natural signals has been recognized and studied in recent years. Therefore, how such sparsity can be utilized, in a non-parametric way, to model the object texture and assist the textural image segmentation process is studied in this paper, and a segmentation scheme based on the sparse representation of the texture information is proposed. More explicitly, the texture is encoded by the dictionaries constructed from the user initialization. Then, an active contour is evolved to optimize the fidelity of the representation provided by the dictionary of the target. In doing so, not only a non-parametric texture modeling technique is provided, but also the sparsity of the representation guarantees the computation efficiency. The experiments are carried out on the publicly available image data sets which contain a large variety of texture images, to analyze the user interaction, performance statistics, and to highlight the algorithm's capability of robustly extracting textured regions from an image.
机译:在图像分割中,我们经常感兴趣的是使用某些量来表征对象,并基于诸如平均强度,梯度大小和对某些预定义滤镜的响应之类的标准执行分类。不幸的是,在许多情况下,这样的数量不足以对复杂的纹理对象建模。沿着不同的研究方向,近年来,自然信号的稀疏特征已经得到认可和研究。因此,本文研究了如何利用这种稀疏性以非参数的方式对物体纹理进行建模并辅助纹理图像分割过程,并提出了一种基于稀疏表示的纹理信息的分割方案。更明确地,纹理由从用户初始化构造的字典编码。然后,展开主动轮廓以优化目标字典提供的表示的保真度。这样做,不仅提供了非参数纹理建模技术,而且表示的稀疏性保证了计算效率。在包含多种纹理图像的公共可用图像数据集上进行了实验,以分析用户交互,性能统计数据,并突出显示算法从图像中可靠地提取纹理区域的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号