首页> 外文期刊>IEEE Transactions on Image Processing >A Generalized Random Walk With Restart and its Application in Depth Up-Sampling and Interactive Segmentation
【24h】

A Generalized Random Walk With Restart and its Application in Depth Up-Sampling and Interactive Segmentation

机译:具有重启的广义随机游动及其在深度上采样和交互式分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the origin of random walk with restart (RWR) and its generalization are described. It is well known that the random walk (RW) and the anisotropic diffusion models share the same energy functional, i.e., the former provides a steady-state solution and the latter gives a flow solution. In contrast, the theoretical background of the RWR scheme is different from that of the diffusion-reaction equation, although the restarting term of the RWR plays a role similar to the reaction term of the diffusion-reaction equation. The behaviors of the two approaches with respect to outliers reveal that they possess different attributes in terms of data propagation. This observation leads to the derivation of a new energy functional, where both volumetric heat capacity and thermal conductivity are considered together, and provides a common framework that unifies both the RW and the RWR approaches, in addition to other regularization methods. The proposed framework allows the RWR to be generalized (GRWR) in semilocal and nonlocal forms. The experimental results demonstrate the superiority of GRWR over existing regularization approaches in terms of depth map up-sampling and interactive image segmentation.
机译:在本文中,描述了带有重启的随机游走的起源(RWR)及其推广。众所周知,随机游走(RW)模型和各向异性扩散模型具有相同的能量函数,即前者提供稳态解,而后者提供流动解。相比之下,RWR方案的理论背景与扩散反应方程式的理论背景不同,尽管RWR的重启项起着类似于扩散反应方程式的反应项的作用。两种方法在异常值方面的行为表明,它们在数据传播方面拥有不同的属性。该观察结果导致了新的能量函数的推导,其中将体积热容和热导率同时考虑在内,并提供了一个统一的框架,除了其他正则化方法外,还统一了RW和RWR方法。所提出的框架允许以半本地和非本地形式对RWR进行广义化(GRWR)。实验结果证明了GRWR在深度图上采样和交互式图像分割方面优于现有的正则化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号