首页> 外文期刊>Image Processing, IEEE Transactions on >View-Based Discriminative Probabilistic Modeling for 3D Object Retrieval and Recognition
【24h】

View-Based Discriminative Probabilistic Modeling for 3D Object Retrieval and Recognition

机译:基于视图的3D对象检索和识别的概率建模

获取原文
获取原文并翻译 | 示例

摘要

In view-based 3D object retrieval and recognition, each object is described by multiple views. A central problem is how to estimate the distance between two objects. Most conventional methods integrate the distances of view pairs across two objects as an estimation of their distance. In this paper, we propose a discriminative probabilistic object modeling approach. It builds probabilistic models for each object based on the distribution of its views, and the distance between two objects is defined as the upper bound of the Kullback–Leibler divergence of the corresponding probabilistic models. 3D object retrieval and recognition is accomplished based on the distance measures. We first learn models for each object by the adaptation from a set of global models with a maximum likelihood principle. A further adaption step is then performed to enhance the discriminative ability of the models. We conduct experiments on the ETH 3D object dataset, the National Taiwan University 3D model dataset, and the Princeton Shape Benchmark. We compare our approach with different methods, and experimental results demonstrate the superiority of our approach.
机译:在基于视图的3D对象检索和识别中,每个对象由多个视图描述。一个中心问题是如何估算两个物体之间的距离。大多数常规方法都将两个对象之间的视图对的距离进行积分,作为其距离的估计。在本文中,我们提出了一种判别概率对象建模方法。它基于其对象的分布为每个对象建立概率模型,并将两个对象之间的距离定义为相应概率模型的Kullback-Leibler散度的上限。 3D对象的检索和识别是基于距离度量完成的。我们首先通过从具有最大似然原理的全局模型集中进行适应来学习每个对象的模型。然后执行进一步的调整步骤以增强模型的判别能力。我们对ETH 3D对象数据集,国立台湾大学3D模型数据集和普林斯顿形状基准进行了实验。我们将我们的方法与不同的方法进行了比较,实验结果证明了我们方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号