首页> 外文期刊>Image Processing, IEEE Transactions on >Additive White Gaussian Noise Level Estimation in SVD Domain for Images
【24h】

Additive White Gaussian Noise Level Estimation in SVD Domain for Images

机译:SVD域中图像的加性高斯白噪声电平估计

获取原文
获取原文并翻译 | 示例

摘要

Accurate estimation of Gaussian noise level is of fundamental interest in a wide variety of vision and image processing applications as it is critical to the processing techniques that follow. In this paper, a new effective noise level estimation method is proposed on the basis of the study of singular values of noise-corrupted images. Two novel aspects of this paper address the major challenges in noise estimation: 1) the use of the tail of singular values for noise estimation to alleviate the influence of the signal on the data basis for the noise estimation process and 2) the addition of known noise to estimate the content-dependent parameter, so that the proposed scheme is adaptive to visual signals, thereby enabling a wider application scope of the proposed scheme. The analysis and experiment results demonstrate that the proposed algorithm can reliably infer noise levels and show robust behavior over a wide range of visual content and noise conditions, and that is outperforms relevant existing methods.
机译:在各种视觉和图像处理应用中,准确估计高斯噪声水平是至关重要的,因为它对随后的处理技术至关重要。在研究噪声损坏图像奇异值的基础上,提出了一种新的有效噪声水平估计方法。本文有两个新颖的方面解决了噪声估计的主要挑战:1)使用奇异值的尾部进行噪声估计以减轻信号对噪声估计过程的数据影响,以及2)增加已知的噪声以估计依赖于内容的参数,从而使所提出的方案适应视觉信号,从而使得所提出的方案的应用范围更广。分析和实验结果表明,该算法能够在广泛的视觉内容和噪声条件下可靠地推断出噪声水平并表现出鲁棒的行为,其性能优于现有的相关方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号