首页> 外文期刊>Image Processing, IEEE Transactions on >Learning-Based Hierarchical Graph for Unsupervised Matting and Foreground Estimation
【24h】

Learning-Based Hierarchical Graph for Unsupervised Matting and Foreground Estimation

机译:基于学习的层次图,用于无监督抠图和前景估计

获取原文
获取原文并翻译 | 示例

摘要

Automatically extracting foreground objects from a natural image remains a challenging task. This paper presents a learning-based hierarchical graph for unsupervised matting. The proposed hierarchical framework progressively condenses image data from pixels into cells, from cells into components, and finally from components into matting layers. First, in the proposed framework, a graph-based contraction process is proposed to condense image pixels into cells in order to reduce the computational loads in the subsequent processes. Cells are further mapped into matting components using spectral clustering over a learning based graph. The graph affinity is efficiently learnt from image patches of different resolutions and the inclusion of multiscale information can effectively improve the performance of spectral clustering. In the final stage of the hierarchical scheme, we propose a multilayer foreground estimation process to assemble matting components into a set of matting layers. Unlike conventional approaches, which typically address binary foreground/background partitioning, the proposed method provides a set of multilayer interpretations for unsupervised matting. Experimental results show that the proposed approach can generate more consistent and accurate results as compared with state-of-the-art techniques.
机译:从自然图像中自动提取前景物体仍然是一项艰巨的任务。本文提出了一种基于学习的无监督抠图层次图。提出的分层框架逐步将图像数据从像素压缩到单元中,从单元压缩到组件中,最后从组件压缩到消光层中。首先,在提出的框架中,提出了一种基于图的收缩过程以将图像像素压缩到单元中,以减少后续过程中的计算量。在基于学习的图上使用光谱聚类将单元进一步映射到消光组件中。可以从不同分辨率的图像块中高效地学习图形亲和力,并且包含多尺度信息可以有效地改善光谱聚类的性能。在分层方案的最后阶段,我们提出了一种多层前景估计过程,以将消光组件组装到一组消光层中。与通常解决二进制前景/背景分区的常规方法不同,该方法为无监督遮罩提供了一组多层解释。实验结果表明,与最新技术相比,该方法可以产生更一致,更准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号