首页> 外文期刊>Image Processing, IEEE Transactions on >Multilayer Surface Albedo for Face Recognition With Reference Images in Bad Lighting Conditions
【24h】

Multilayer Surface Albedo for Face Recognition With Reference Images in Bad Lighting Conditions

机译:多层表面反照率用于在恶劣照明条件下使用参考图像进行人脸识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a multilayer surface albedo (MLSA) model to tackle face recognition in bad lighting conditions, especially with reference images in bad lighting conditions. Some previous researches conclude that illumination variations mainly lie in the large-scale features of an image and extract small-scale features in the surface albedo (or surface texture). However, this surface albedo is not robust enough, which still contains some detrimental sharp features. To improve robustness of the surface albedo, MLSA further decomposes it as a linear sum of several detailed layers, to separate and represent features of different scales in a more specific way. Then, the layers are adjusted by separate weights, which are global parameters and selected for only once. A criterion function is developed to select these layer weights with an independent training set. Despite controlled illumination variations, MLSA is also effective to uncontrolled illumination variations, even mixed with other complicated variations (expression, pose, occlusion, and so on). Extensive experiments on four benchmark data sets show that MLSA has good receiver operating characteristic curve and statistical discriminating capability. The refined albedo improves recognition performance, especially with reference images in bad lighting conditions.
机译:在本文中,我们提出了一种多层表面反照率(MLSA)模型,以解决不良光照条件下的面部识别,尤其是在不良光照条件下的参考图像。先前的一些研究得出结论,照度变化主要在于图像的大尺度特征,并提取表面反照率(或表面纹理)中的小尺度特征。然而,该表面反照率不够坚固,仍然具有一些有害的尖锐特征。为了提高表面反照率的鲁棒性,MLSA进一步将其分解为几个详细层的线性总和,以更特定的方式分离和表示不同比例的特征。然后,通过单独的权重调整图层,权重是全局参数,并且只能选择一次。开发了一个标准功能来通过独立的训练集选择这些层权重。尽管照度变化受到控制,但是MLSA对于不受控制的照度变化也很有效,甚至与其他复杂的变化(表情,姿势,遮挡等)混合在一起。对四个基准数据集的大量实验表明,MLSA具有良好的接收机工作特性曲线和统计判别能力。精致的反照率提高了识别性能,尤其是在光线不足的情况下使用参考图像时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号