首页> 外文期刊>Image Processing, IEEE Transactions on >A Novel Generalized DCT-Based JND Profile Based on an Elaborate CM-JND Model for Variable Block-Sized Transforms in Monochrome Images
【24h】

A Novel Generalized DCT-Based JND Profile Based on an Elaborate CM-JND Model for Variable Block-Sized Transforms in Monochrome Images

机译:基于复杂CM-JND模型的新型基于DCT的JND概要文件,用于单色图像中可变块大小的变换

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new DCT-based just noticeable difference (JND) profile incorporating the spatial contrast sensitivity function, the luminance adaptation effect, and the contrast masking (CM) effect. The proposed JND profile overcomes two limitations of conventional JND profiles: 1) the CM JND models in the conventional JND profiles employed simple texture complexity metrics, which are not often highly correlated with perceived complexity, especially for unstructured patterns. So, we proposed a new texture complexity metric that considers not only contrast intensity, but also structureness of image patterns, called the structural contrast index. We also newly found out that, as the structural contrast index of a background texture pattern increases, the modulation factors for CM-JND show a bandpass property in frequency. Based on this observation, a new CM-JND is modeled as a function of DCT frequency and the proposed structural contrast index, showing significantly high correlations with measured CM-JND values and 2) while the conventional DCT-based JND profiles are only applicable for specific transform block sizes, our proposed DCT-based JND profile is first designed to be applicable to any size of transform by deriving a new summation effect function, which can also be appropriately applied for quad-tree transform of high efficiency video coding. For the overall performance, the proposed DCT-based JND profile shows more tolerance for distortions with better perceptual quality than other JND profiles under comparison.
机译:在本文中,我们提出了一种新的基于DCT的恰到好处的差异(JND)配置文件,其中包含了空间对比度灵敏度函数,亮度适应效果和对比度掩盖(CM)效果。提出的JND轮廓克服了常规JND轮廓的两个局限性:1)常规JND轮廓中的CM JND模型采用简单的纹理复杂度度量,该度量通常与感知的复杂度不高度相关,尤其是对于非结构化图案。因此,我们提出了一种新的纹理复杂性度量,该度量不仅考虑对比度强度,还考虑图像图案的结构性,称为结构对比度指数。我们还新发现,随着背景纹理图案的结构对比度增加,CM-JND的调制因子在频率上显示出带通特性。基于此观察结果,将新的CM-JND建模为DCT频率和建议的结构对比度指数的函数,显示与测得的CM-JND值具有显着的相关性; 2)传统的基于DCT的JND轮廓仅适用于对于特定的变换块大小,我们首先提出了基于DCT的JND概要文件,旨在通过推导新的求和效应函数将其应用于任何大小的变换,该函数也可以适用于高效视频编码的四叉树变换。对于整体性能,相比之下,所建议的基于DCT的JND轮廓显示出更高的感知质量,对失真的容忍度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号