首页> 外文期刊>Image Processing, IEEE Transactions on >Salient Region Detection via Integrating Diffusion-Based Compactness and Local Contrast
【24h】

Salient Region Detection via Integrating Diffusion-Based Compactness and Local Contrast

机译:通过集成基于扩散的紧密度和局部对比度的显着区域检测

获取原文
获取原文并翻译 | 示例

摘要

Salient region detection is a challenging problem and an important topic in computer vision. It has a wide range of applications, such as object recognition and segmentation. Many approaches have been proposed to detect salient regions using different visual cues, such as compactness, uniqueness, and objectness. However, each visual cue-based method has its own limitations. After analyzing the advantages and limitations of different visual cues, we found that compactness and local contrast are complementary to each other. In addition, local contrast can very effectively recover incorrectly suppressed salient regions using compactness cues. Motivated by this, we propose a bottom-up salient region detection method that integrates compactness and local contrast cues. Furthermore, to produce a pixel-accurate saliency map that more uniformly covers the salient objects, we propagate the saliency information using a diffusion process. Our experimental results on four benchmark data sets demonstrate the effectiveness of the proposed method. Our method produces more accurate saliency maps with better precision-recall curve and higher F-Measure than other 19 state-of-the-arts approaches on ASD, CSSD, and ECSSD data sets.
机译:突出区域检测是计算机视觉中一个具有挑战性的问题和重要课题。它具有广泛的应用,例如对象识别和分割。已经提出了许多方法来使用不同的视觉提示来检测显着区域,例如紧凑性,唯一性和客观性。但是,每种基于视觉提示的方法都有其自身的局限性。通过分析不同视觉提示的优势和局限性,我们发现紧凑性和局部对比度是相辅相成的。此外,局部对比度可以使用紧密度提示非常有效地恢复被错误抑制的显着区域。为此,我们提出了一种自下而上的显着区域检测方法,该方法将紧凑性和局部对比度提示相结合。此外,为了生成更均匀地覆盖显着对象的像素精确的显着性图,我们使用扩散过程传播显着性信息。我们在四个基准数据集上的实验结果证明了该方法的有效性。与ASD,CSSD和ECSSD数据集上的其他19种最新方法相比,我们的方法可生成更准确的显着性图,具有更好的精确调用曲线和更高的F度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号