首页> 外文期刊>Image Processing, IEEE Transactions on >Silhouette Analysis for Human Action Recognition Based on Supervised Temporal t-SNE and Incremental Learning
【24h】

Silhouette Analysis for Human Action Recognition Based on Supervised Temporal t-SNE and Incremental Learning

机译:基于有监督的时间t-SNE和增量学习的人体动作识别轮廓分析

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a human action recognition method for human silhouette sequences based on supervised temporal t-stochastic neighbor embedding (ST-tSNE) and incremental learning. Inspired by the SNE and its variants, ST-tSNE is proposed to learn the underlying relationship between action frames in a manifold, where the class label information and temporal information are introduced to well represent those frames from the same action class. As to the incremental learning, an important step for action recognition, we introduce three methods to perform the low-dimensional embedding of new data. Two of them are motivated by local methods, locally linear embedding and locality preserving projection. Those two techniques are proposed to learn explicit linear representations following the local neighbor relationship, and their effectiveness is investigated for preserving the intrinsic action structure. The rest one is based on manifold-oriented stochastic neighbor projection to find a linear projection from high-dimensional to low-dimensional space capturing the underlying pattern manifold. Extensive experimental results and comparisons with the state-of-the-art methods demonstrate the effectiveness and robustness of the proposed ST-tSNE and incremental learning methods in the human action silhouette analysis.
机译:本文提出了一种基于监督的时间t随机邻居嵌入(ST-tSNE)和增量学习的人体轮廓序列的人体动作识别方法。受SNE及其变种的启发,提出了ST-tSNE,以学习流形中动作框架之间的潜在关系,其中引入了类标签信息和时间信息以很好地表示同一动作类中的那些框架。关于增量学习,这是动作识别的重要步骤,我们介绍了三种方法来执行新数据的低维嵌入。其中两个是受局部方法,局部线性嵌入和局部保留投影的激励。提出了这两种技术来学习遵循局部邻居关系的显式线性表示,并研究了它们在保持固有动作结构方面的有效性。其余的基于面向流形的随机相邻投影,以找到从高维到低维空间的线性投影,以捕获下面的模式流形。大量的实验结果和与最新方法的比较证明了拟议的ST-tSNE和增量学习方法在人体动作轮廓分析中的有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号