首页> 外文期刊>Image Processing, IEEE Transactions on >Inverse Sparse Tracker With a Locally Weighted Distance Metric
【24h】

Inverse Sparse Tracker With a Locally Weighted Distance Metric

机译:具有局部加权距离度量的逆稀疏跟踪器

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation has been recently extensively studied for visual tracking and generally facilitates more accurate tracking results than classic methods. In this paper, we propose a sparsity-based tracking algorithm that is featured with two components: 1) an inverse sparse representation formulation and 2) a locally weighted distance metric. In the inverse sparse representation formulation, the target template is reconstructed with particles, which enables the tracker to compute the weights of all particles by solving only one optimization problem and thereby provides a quite efficient model. This is in direct contrast to most previous sparse trackers that entail solving one optimization problem for each particle. However, we notice that this formulation with normal Euclidean distance metric is sensitive to partial noise like occlusion and illumination changes. To this end, we design a locally weighted distance metric to replace the Euclidean one. Similar ideas of using local features appear in other works, but only being supported by popular assumptions like local models could handle partial noise better than holistic models, without any solid theoretical analysis. In this paper, we attempt to explicitly explain it from a mathematical view. On that basis, we further propose a method to assign local weights by exploiting the temporal and spatial continuity. In the proposed method, appearance changes caused by partial occlusion and shape deformation are carefully considered, thereby facilitating accurate similarity measurement and model update. The experimental validation is conducted from two aspects: 1) self validation on key components and 2) comparison with other state-of-the-art algorithms. Results over 15 challenging sequences show that the proposed tracking algorithm performs favorably against the existing sparsity-based trackers and the other state-of-the-art methods.
机译:稀疏表示最近已被广泛研究用于视觉跟踪,并且与传统方法相比,通常有助于更精确的跟踪结果。在本文中,我们提出了一种基于稀疏性的跟踪算法,该算法具有两个组成部分:1)反稀疏表示公式; 2)局部加权距离度量。在稀疏逆表示中,目标模板是用粒子重建的,这使跟踪器仅通过解决一个优化问题就可以计算所有粒子的权重,从而提供了一个非常有效的模型。这与大多数以前的稀疏跟踪器形成鲜明对比,后者需要为每个粒子解决一个优化问题。但是,我们注意到具有正常欧几里德距离度量的此公式对诸如遮挡和照度变化的局部噪声敏感。为此,我们设计了一个局部加权距离度量来代替欧几里得距离度量。在其他作品中也出现了使用局部特征的类似想法,但只有诸如局部模型之类的流行假设才能够支持局部噪声,而不是整体模型,而无需任何扎实的理论分析。在本文中,我们尝试从数学角度明确地解释它。在此基础上,我们进一步提出了一种通过利用时间和空间连续性来分配局部权重的方法。在提出的方法中,仔细考虑了由部分遮挡和形状变形引起的外观变化,从而有助于精确的相似度测量和模型更新。实验验证从两个方面进行:1)关键组件的自我验证; 2)与其他最新算法的比较。超过15个具有挑战性的序列的结果表明,与现有的基于稀疏性的跟踪器和其他最新方法相比,所提出的跟踪算法具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号