首页> 外文期刊>Image Processing, IEEE Transactions on >A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors
【24h】

A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors

机译:均质和异质传感器获取图像变化检测的新多元统计模型

获取原文
获取原文并翻译 | 示例

摘要

Remote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available and a new image is acquired in an emergency situation (resulting from a natural disaster for instance) by a radar satellite. In such a case, images with heterogeneous properties have to be compared for change detection. This paper proposes a new approach for similarity measurement between images acquired by heterogeneous sensors. The approach exploits the considered sensor physical properties and specially the associated measurement noise models and local joint distributions. These properties are inferred through manifold learning. The resulting similarity measure has been successfully applied to detect changes between many kinds of images, including pairs of optical images and pairs of optical-radar images.
机译:遥感图像通常用于监视地球表面的演变。可以通过检测在不同时间(可能是通过不同类型的传感器)获取的图像之间的变化来进行监视。一个典型的案例是,给定区域的光学图像可用,并且在紧急情况下(例如,由于自然灾害导致的)雷达雷达获取了新图像。在这种情况下,必须比较具有异构属性的图像以进行变化检测。本文提出了一种新的方法来测量异构传感器获取的图像之间的相似度。该方法利用了考虑的传感器物理特性,特别是相关的测量噪声模型和局部关节分布。这些属性是通过多种学习来推断的。所得到的相似性度量已成功应用于检测多种图像之间的变化,包括成对的光学图像和成对的光学雷达图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号