首页> 外文期刊>IEEE Transactions on Image Processing >Large-Scale Cross-Modality Search via Collective Matrix Factorization Hashing
【24h】

Large-Scale Cross-Modality Search via Collective Matrix Factorization Hashing

机译:通过集体矩阵分解散列的大规模跨模态搜索

获取原文
获取原文并翻译 | 示例

摘要

By transforming data into binary representation, i.e., Hashing, we can perform high-speed search with low storage cost, and thus, Hashing has collected increasing research interest in the recent years. Recently, how to generate Hashcode for multimodal data (e.g., images with textual tags, documents with photos, and so on) for large-scale cross-modality search (e.g., searching semantically related images in database for a document query) is an important research issue because of the fast growth of multimodal data in the Web. To address this issue, a novel framework for multimodal Hashing is proposed, termed as Collective Matrix Factorization Hashing (CMFH). The key idea of CMFH is to learn unified Hashcodes for different modalities of one multimodal instance in the shared latent semantic space in which different modalities can be effectively connected. Therefore, accurate cross-modality search is supported. Based on the general framework, we extend it in the unsupervised scenario where it tries to preserve the Euclidean structure, and in the supervised scenario where it fully exploits the label information of data. The corresponding theoretical analysis and the optimization algorithms are given. We conducted comprehensive experiments on three benchmark data sets for cross-modality search. The experimental results demonstrate that CMFH can significantly outperform several state-of-the-art cross-modality Hashing methods, which validates the effectiveness of the proposed CMFH.
机译:通过将数据转换为二进制表示即哈希,我们可以以较低的存储成本执行高速搜索,因此,哈希近年来引起了越来越多的研究兴趣。最近,如何生成用于多模式数据(例如,带有文本标签的图像,带有照片的文档等)的哈希码以进行大规模跨模式搜索(例如,在数据库中搜索语义相关的图像以进行文档查询)非常重要Web上多模式数据的快速增长引起了研究问题。为了解决这个问题,提出了一种用于多模式散列的新颖框架,称为集体矩阵分解散列(CMFH)。 CMFH的关键思想是在共享的潜在语义空间中学习一种多模式实例的不同模态的统一哈希码,在其中可以有效地连接不同的模态。因此,支持准确的跨模式搜索。在通用框架的基础上,我们将其扩展到试图保留欧几里得结构的无监督情况下,并在其充分利用数据标签信息的有监督情况下进行扩展。给出了相应的理论分析和优化算法。我们对三个基准数据集进行了跨模态搜索的综合实验。实验结果表明,CMFH可以明显优于几种最新的交叉模式哈希方法,这证明了所提出的CMFH的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号