首页> 外文期刊>IEEE Transactions on Image Processing >Super-Resolution of Dynamic Scenes Using Sampling Rate Diversity
【24h】

Super-Resolution of Dynamic Scenes Using Sampling Rate Diversity

机译:使用采样率分集对动态场景进行超分辨率

获取原文
获取原文并翻译 | 示例

摘要

In earlier work, we proposed a super-resolution (SR) method that required the availability of two low resolution (LR) sequences corresponding to two different sampling rates, where images from one sequence were used as a basis to represent the polyphase components (PPCs) of the high resolution (HR) image, while the other LR sequences provided the reference LR image (to be super-resolved). The (simple) algorithm implemented by Salem and Yagle is only applicable when the scene is static. In this paper, we recast our approach to SR as a two-stage example-based algorithm to process dynamic scenes. We employ feature selection to create, from the LR frames, local LR dictionaries to represent PPCs of HR patches. To enforce sparsity, we implement Gaussian generative models as an efficient alternative to L1-norm minimization. Estimation errors are further reduced using what we refer to as the anchors, which are based on the relationship between PPCs corresponding to different sampling rates. In the second stage, we revert to simple single frame SR (applied to each frame), using HR dictionaries extracted from the super-resolved sequence of the previous stage. The second stage is thus a reiteration of the sparsity coding scheme, using only one LR sequence, and without involving PPCs. The ability of the modified algorithm to super-resolve challenging LR sequences reintroduces sampling rate diversity as a prerequisite of robust multiframe SR.
机译:在较早的工作中,我们提出了一种超分辨率(SR)方法,该方法要求具有两个对应于两种不同采样率的低分辨率(LR)序列,其中来自一个序列的图像被用作代表多相分量(PPC)的基础。 )(HR)图像),而其他LR序列提供参考LR图像(超分辨率)。 Salem和Yagle实现的(简单)算法仅适用于静态场景。在本文中,我们将基于两阶段示例算法的SR方法重塑为动态场景。我们使用特征选择从LR帧创建本地LR字典来表示HR补丁的PPC。为了实施稀疏性,我们将高斯生成模型实现为L1范数最小化的有效替代方法。使用称为锚的锚可以进一步减少估计误差,这些锚基于与不同采样率相对应的PPC之间的关系。在第二阶段,我们使用从上一阶段的超分辨序列中提取的HR字典,还原为简单的单帧SR(应用于每个帧)。因此,第二阶段是重复稀疏编码方案,仅使用一个LR序列,而不涉及PPC。改进算法具有超强解析性的LR序列的超分辨能力将采样率多样性重新引入,是稳健的多帧SR的前提。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号