首页> 外文期刊>IEEE Transactions on Image Processing >Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network
【24h】

Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network

机译:基于2D直接组合基于模型的特定人脸马尔可夫网络的人脸草图合成

获取原文
获取原文并翻译 | 示例

摘要

A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests.
机译:提出了一种面部素描综合系统,其特征在于基于2D直接组合模型(2DDCM)的特定于面部的马尔可夫网络。与现有的面部素描合成系统相反,提出的方案旨在合成素描,从而再现特定艺术家的独特绘画风格,其中该绘画风格是从包含大量图像/素描对训练的数据集中学习的样品。综合系统包括三个模块,即全局模块,本地模块和增强模块。全局模块应用2DDCM方法来合成输入图像的全局面部几何形状和纹理。然后,使用参数2DDCM模型和非参数马尔可夫随机场(MRF)网络,以基于局部补丁的方式将详细纹理添加到合成草图中。值得注意的是,MRF方法使综合结果的外观与训练样本的绘制样式更加一致,而2DDCM方法使综合结果具有更衍生的样式。结果,大大提高了合成草图与输入图像之间的相似性。最后,执行后处理操作以通过添加粗线或曲线来强调照明条件来增强合成图像的阴影区域。实验结果证实,合成的面部图像与输入图像以及同一位艺术家提供的真实素描具有良好的定性和定量一致性。通过从输入图像中合成具有各种各样的面部姿势,光照条件和种族的面部草图来证明所提出框架的代表性力量,即使这些图像未包括在训练数据集中也是如此。此外,通过自动面部识别测试证明了所提出框架的实际适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号