首页> 外文期刊>IEEE Transactions on Image Processing >Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding
【24h】

Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding

机译:联合机器学习和博弈论的高效视频编码速率控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in high efficiency video coding (HEVC). First, a support vector machine-based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level rate-distortion (R-D) model. The legacy “chicken-and-egg” dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model-based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model-based utility function is proved, and Nash bargaining solution is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level quantization parameter (QP) change. Finally, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT-based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results, and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.
机译:本文提出了一种联合机器学习和博弈论建模(MLGT)框架,用于高效视频编码(HEVC)中的帧间编码树单元(CTU)级位分配和速率控制(RC)优化。首先,提出了一种基于支持向量机的多分类方案,以提高CTU级速率失真(R-D)模型的预测精度。提议通过基于学习的R-D模型来克服视频编码中的传统“鸡与蛋”难题。其次,提出了一种基于混合R-D模型的协同议价博弈理论进行比特分配优化,证明了基于混合R-D模型的效用函数的凸性,并通过提出的迭代解搜索方法获得了纳什议价解决方案。最小效用通过参考编码失真和帧级量化参数(QP)的变化进行调整。最后,调整帧内QP和帧间自适应比特率以使帧间具有更多的比特资源,以在讨价还价游戏优化中保持平滑的质量和比特消耗。实验结果表明,与其他最新的单程RC方法相比,基于MLGT的RC方法可以实现更好的RD性能,质量平滑度,比特率精度,缓冲区控制结果和主观视觉质量,并且所获得的RD性能非常接近FixedQP方法的性能极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号