首页> 外文期刊>IEEE Transactions on Image Processing >Point Light Source Position Estimation From RGB-D Images by Learning Surface Attributes
【24h】

Point Light Source Position Estimation From RGB-D Images by Learning Surface Attributes

机译:通过学习表面属性从RGB-D图像估计点光源位置

获取原文
获取原文并翻译 | 示例

摘要

Light source position (LSP) estimation is a difficult yet an important problem in computer vision. A common approach for estimating the LSP assumes Lambert’s law. However, in real-world scenes, Lambert’s law does not hold for all different types of surfaces. Instead of assuming all that surfaces follow Lambert’s law, our approach classifies image surface segments based on their photometric and geometric surface attributes (i.e. glossy, matte, curved, and so on) and assigns weights to image surface segments based on their suitability for LSP estimation. In addition, we propose the use of the estimated camera pose to globally constrain LSP for RGB-D video sequences. Experiments on Boom and a newly collected RGB-D video data sets show that the state-of-the-art methods are outperformed by the proposed method. The results demonstrate that weighting image surface segments based on their attributes outperform the state-of-the-art methods in which the image surface segments are considered to equally contribute. In particular, by using the proposed surface weighting, the angular error for LSP estimation is reduced from 12.6° to 8.2° and 24.6° to 4.8° for Boom and RGB-D video data sets, respectively. Moreover, using the camera pose to globally constrain LSP provides higher accuracy (4.8°) compared with using single frames (8.5°).
机译:在计算机视觉中,光源位置(LSP)估计是一个困难而又重要的问题。估计LSP的常用方法是采用兰伯特定律。但是,在真实场景中,兰伯特定律并不适用于所有不同类型的表面。我们的方法不是假设所有表面都遵循朗伯定律,而是根据其光度和几何表面属性(即光泽,无光泽,弯曲等)对图像表面片段进行分类,并根据其对LSP估计的适用性为图像表面片段分配权重。另外,我们建议使用估计的摄像机姿态来为RGB-D视频序列全局约束LSP。在Boom和新收集的RGB-D视频数据集上进行的实验表明,该方法优于最新方法。结果表明,基于图像表面片段的属性对图像表面片段进行加权的性能优于将图像表面片段视为同等贡献的最新方法。特别是,通过使用建议的表面加权,对于Boom和RGB-D视频数据集,用于LSP估计的角度误差分别从12.6°减小到8.2°,从24.6°减小到4.8°。此外,与使用单帧(8.5°)相比,使用摄像机姿态全局约束LSP可提供更高的准确性(4.8°)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号