首页> 外文期刊>IEEE Transactions on Image Processing >Optimized Color Filter Arrays for Sparse Representation-Based Demosaicking
【24h】

Optimized Color Filter Arrays for Sparse Representation-Based Demosaicking

机译:针对基于稀疏表示的Demosaicking的优化彩色滤光片阵列

获取原文
获取原文并翻译 | 示例

摘要

Demosaicking is the problem of reconstructing a color image from the raw image captured by a digital color camera that covers its only imaging sensor with a color filter array (CFA). Sparse representation-based demosaicking has been shown to produce superior reconstruction quality. However, almost all existing algorithms in this category use the CFAs, which are not specifically optimized for the algorithms. In this paper, we consider optimally designing CFAs for sparse representation-based demosaicking, where the dictionary is well-chosen. The fact that CFAs correspond to the projection matrices used in compressed sensing inspires us to optimize CFAs via minimizing the mutual coherence. This is more challenging than that for traditional projection matrices because CFAs have physical realizability constraints. However, most of the existing methods for minimizing the mutual coherence require that the projection matrices should be unconstrained, making them inapplicable for designing CFAs. We consider directly minimizing the mutual coherence with the CFA’s physical realizability constraints as a generalized fractional programming problem, which needs to find sufficiently accurate solutions to a sequence of nonconvex nonsmooth minimization problems. We adapt the redistributed proximal bundle method to address this issue. Experiments on benchmark images testify to the superiority of the proposed method. In particular, we show that a simple sparse representation-based demosaicking algorithm with our specifically optimized CFA can outperform LSSC [1]. To the best of our knowledge, it is the first sparse representation-based demosaicking algorithm that beats LSSC in terms of CPSNR.
机译:去马赛克是从数字彩色摄像机捕获的原始图像中重建彩色图像的问题,该数字彩色摄像机覆盖唯一的带有彩色滤光片阵列(CFA)的成像传感器。研究表明,基于稀疏表示的去马赛克技术可以产生出色的重建质量。但是,该类别中几乎所有现有算法都使用CFA,但并未针对该算法进行专门优化。在本文中,我们考虑为字典稀疏的基于稀疏表示的去马赛克而优化设计CFA。 CFA对应于压缩感测中使用的投影矩阵这一事实激发了我们通过最小化相互相干来优化CFA。这比传统的投影矩阵更具挑战性,因为CFA具有物理可实现性约束。但是,大多数现有的最小化相干性的方法都要求投影矩阵应该不受约束,从而使其不适用于CFAs设计。我们考虑将与CFA的物理可实现性约束之间的直接一致性最小化,作为广义的分数规划问题,该问题需要找到一系列非凸,非平滑最小化问题的足够准确的解决方案。我们采用重新分配的近端束方法来解决此问题。在基准图像上进行的实验证明了该方法的优越性。特别是,我们证明了使用经过特别优化的CFA的基于稀疏表示的简单去马赛克算法可以胜过LSSC [1]。据我们所知,它是第一个基于稀疏表示的去马赛克算法,在CPSNR方面击败了LSSC。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2017年第5期|2381-2393|共13页
  • 作者单位

    Beijing Key Laboratory of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China;

    College of Information Engineering and Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China;

    Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer Science, Peking University, Beijing, China;

    Beijing Key Laboratory of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image color analysis; Dictionaries; Algorithm design and analysis; Color; Image reconstruction; Sparse matrices; Coherence;

    机译:图像色彩分析词典算法设计与分析颜色图像重建稀疏矩阵相干性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号