首页> 外文期刊>IEEE Transactions on Image Processing >Super-Resolution Person Re-Identification With Semi-Coupled Low-Rank Discriminant Dictionary Learning
【24h】

Super-Resolution Person Re-Identification With Semi-Coupled Low-Rank Discriminant Dictionary Learning

机译:半耦合低秩判别字典学习的超分辨人重新识别

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification has been widely studied due to its importance in surveillance and forensics applications. In practice, gallery images are high resolution (HR), while probe images are usually low resolution (LR) in the identification scenarios with large variation of illumination, weather, or quality of cameras. Person re-identification in this kind of scenarios, which we call super-resolution (SR) person re-identification, has not been well studied. In this paper, we propose a semi-coupled low-rank discriminant dictionary learning (SLD2L) approach for SR person re-identification task. With the HR and LR dictionary pair and mapping matrices learned from the features of HR and LR training images, SLD2L can convert the features of the LR probe images into HR features. To ensure that the converted features have favorable discriminative capability and the learned dictionaries can well characterize intrinsic feature spaces of the HR and LR images, we design a discriminant term and a low-rank regularization term for SLD2L. Moreover, considering that low resolution results in different degrees of loss for different types of visual appearance features, we propose a multi-view SLD2L (MVSLD2L) approach, which can learn the type-specific dictionary pair and mappings for each type of feature. Experimental results on multiple publicly available data sets demonstrate the effectiveness of our proposed approaches for the SR person re-identification task.
机译:由于人员重新识别在监视和取证应用中的重要性,因此已被广泛研究。实际上,画廊图像是高分辨率(HR)的,而探测图像通常在照明,天气或摄像机质量变化较大的识别方案中为低分辨率(LR)。在这种情况下,我们称为超分辨率(SR)人员重新识别的人员重新识别尚未得到很好的研究。在本文中,我们提出了一种用于SR人重新识别任务的半耦合低秩判别词典学习(SLD2L)方法。借助从HR和LR训练图像的特征中学到的HR和LR字典对以及映射矩阵,SLD2L可以将LR探针图像的特征转换为HR特征。为了确保转换后的特征具有良好的判别能力,并且所学习的词典能够很好地表征HR和LR图像的固有特征空间,我们设计了SLD2L的判别项和低秩正则化项。此外,考虑到低分辨率会导致不同类型的视觉外观特征出现不同程度的损失,我们提出了一种多视图SLD2L(MVSLD2L)方法,该方法可以学习特定于类型的字典对和每种类型特征的映射。在多个公开可用数据集上的实验结果证明了我们提出的方法用于SR人员重新识别任务的有效性。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2017年第3期|1363-1378|共16页
  • 作者单位

    State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan, China;

    State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan, China;

    State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan, China;

    National Engineering Research Center for Multimedia Software, Computer School, Wuhan University, Wuhan, China;

    School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China;

    School of Computer Science and Engineering, Beihang University, Beijing, China;

    State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan, China;

    College of Computer Science, Nanjing University of Science and Technology, Nanjing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dictionaries; Image resolution; Cameras; Training; Probes; Measurement; Image restoration;

    机译:词典;图像分辨率;相机;培训;探测;测量;图像恢复;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号