首页> 外文期刊>IEEE Transactions on Image Processing >Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images
【24h】

Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images

机译:JPEG图像软解码的基于随机游动图拉普拉斯算子的平滑度先验

获取原文
获取原文并翻译 | 示例

摘要

Given the prevalence of joint photographic experts group (JPEG) compressed images, optimizing image reconstruction from the compressed format remains an important problem. Instead of simply reconstructing a pixel block from the centers of indexed discrete cosine transform (DCT) coefficient quantization bins (hard decoding), soft decoding reconstructs a block by selecting appropriate coefficient values within the indexed bins with the help of signal priors. The challenge thus lies in how to define suitable priors and apply them effectively. In this paper, we combine three image priors—Laplacian prior for DCT coefficients, sparsity prior, and graph-signal smoothness prior for image patches—to construct an efficient JPEG soft decoding algorithm. Specifically, we first use the Laplacian prior to compute a minimum mean square error initial solution for each code block. Next, we show that while the sparsity prior can reduce block artifacts, limiting the size of the overcomplete dictionary (to lower computation) would lead to poor recovery of high DCT frequencies. To alleviate this problem, we design a new graph-signal smoothness prior (desired signal has mainly low graph frequencies) based on the left eigenvectors of the random walk graph Laplacian matrix (LERaG). Compared with the previous graph-signal smoothness priors, LERaG has desirable image filtering properties with low computation overhead. We demonstrate how LERaG can facilitate recovery of high DCT frequencies of a piecewise smooth signal via an interpretation of low graph frequency components as relaxed solutions to normalized cut in spectral clustering. Finally, we construct a soft decoding algorithm using the three signal priors with appropriate prior weights. Experimental results show that our proposal outperforms the state-of-the-art soft decoding algorithms in both objective and subjective evaluations noticeably.
机译:考虑到联合摄影专家组(JPEG)压缩图像的盛行,从压缩格式优化图像重建仍然是一个重要问题。代替从索引离散余弦变换(DCT)系数量化仓的中心简单地重建像素块(硬解码),软解码通过在先验信号的帮助下通过在索引仓中选择适当的系数值来重建块。因此,挑战在于如何定义合适的先验并有效地应用它们。在本文中,我们结合了三个图像先验(DCT系数的拉普拉斯先验,稀疏度和图像补丁的图信号平滑度先验)来构建有效的JPEG软解码算法。具体来说,我们首先使用拉普拉斯算子为每个代码块计算最小均方误差初始解。接下来,我们表明尽管稀疏先验可以减少块伪像,但限制过完整字典的大小(以降低计算量)将导致高DCT频率的恢复不佳。为了缓解这个问题,我们基于随机游动图拉普拉斯矩阵(LERaG)的左特征向量,设计了一种新的图形信号平滑度先验(期望信号主要具有较低的图形频率)。与先前的图形信号平滑度先验相比,LERaG具有令人满意的图像过滤特性,并且具有较低的计算开销。我们演示了LERaG如何通过将低图频率分量解释为频谱聚类中归一化割的松弛解来促进分段平滑信号的高DCT频率的恢复。最后,我们使用具有适当先验权重的三个信号先验来构建软解码算法。实验结果表明,我们的建议在客观和主观评估方面均优于最新的软解码算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号