首页> 外文期刊>IEEE Transactions on Image Processing >A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin
【24h】

A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin

机译:人体皮肤反射共聚焦显微图像堆栈的3D分割的标记泊松过程驱动潜在形状模型

获取原文
获取原文并翻译 | 示例

摘要

Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped “peaks and valleys.” In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10– 20 μm .
机译:从3D数据集中分割感兴趣的对象是生物数据中遇到的常见问题。小视野和内在的生物学变异性加上图像中强度,分辨率和低对比度的光学细微变化,使得分割任务变得困难,尤其是对于未染色的活组织或刚切除的厚组织的显微镜检查。除了感兴趣的对象的外观之外,并入形状信息通常可以帮助提高分割性能。然而,组织中物体的形状可能高度可变,因此包含这些变化的灵活形状模型的设计具有挑战性。为了解决此类复杂的分割问题,我们提出了一个统一的概率框架,该框架可以纳入与复杂形状,变量外观和未知位置相关的不确定性。激发该框架发展的驱动应用是一个生物学上重要的分割问题:在人体皮肤的3D反射共聚焦显微镜(RCM)图像中自动检测和分割真皮-表皮交界处(DEJ)的任务。 RCM成像可以无创地观察细胞,核和形态学细节。 DEJ是重要的形态特征,因为它通常是疾病,疾病和癌症的发源地。检测DEJ颇具挑战性,因为它是3D体积中的2D表面,具有大量但高度可变的不规则间隔和形状可变的“峰和谷”。此外,RCM成像分辨率,对比度和强度会随深度而变化。因此,现有模型需要包含固有结构,同时允许其所有参数的可变性。我们提出了一个模型,该模型可以通过利用领域知识来构建模型的适当先验条件,在无人监督的环境中合并具有复杂形状和可变外观的目标对象。我们对该结构进行建模的新颖策略将空间泊松过程与形状先验相结合,并使用吉布斯采样执行推理。实验结果表明,所提出的无监督模型能够以生理相关的精度自动检测DEJ,范围为10-20μm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号