首页> 外文期刊>Image Processing, IEEE Transactions on >Single Image Super-Resolution via Multiple Mixture Prior Models
【24h】

Single Image Super-Resolution via Multiple Mixture Prior Models

机译:通过多个混合先验模型实现单图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Example learning-based single image super-resolution (SR) is a promising method for reconstructing a high-resolution (HR) image from a single-input low-resolution (LR) image. Lots of popular SR approaches are more likely either time-or space-intensive, which limit their practical applications. Hence, some research has focused on a subspace view and delivered state-of-the-art results. In this paper, we utilize an effective way with mixture prior models to transform the large nonlinear feature space of LR images into a group of linear subspaces in the training phase. In particular, we first partition image patches into several groups by a novel selective patch processing method based on difference curvature of LR patches, and then learning the mixture prior models in each group. Moreover, different prior distributions have various effectiveness in SR, and in this case, we find that student-t prior shows stronger performance than the well-known Gaussian prior. In the testing phase, we adopt the learned multiple mixture prior models to map the input LR features into the appropriate subspace, and finally reconstruct the corresponding HR image in a novel mixed matching way. Experimental results indicate that the proposed approach is both quantitatively and qualitatively superior to some state-of-the-art SR methods.
机译:基于示例学习的单图像超分辨率(SR)是从单输入低分辨率(LR)图像重建高分辨率(HR)图像的有前途的方法。许多流行的SR方法更可能是时间密集型或空间密集型的,这限制了它们的实际应用。因此,一些研究集中在子空间视图上,并提供了最新的结果。在本文中,我们利用混合先验模型的有效方法,在训练阶段将LR图像的大型非线性特征空间转换为一组线性子空间。特别是,我们首先通过一种新颖的基于LR色块差曲率的选择性色块处理方法将图像色块划分为几组,然后学习每组中的混合先验模型。此外,不同的先验分布在SR中具有不同的效果,在这种情况下,我们发现Student-t先验表现出比公知的高斯先验更强的性能。在测试阶段,我们采用学习到的多个混合先验模型将输入的LR特征映射到适当的子空间中,最后以一种新颖的混合匹配方式重建相应的HR图像。实验结果表明,所提出的方法在数量和质量上均优于某些最新的SR方法。

著录项

  • 来源
    《Image Processing, IEEE Transactions on》 |2018年第12期|5904-5917|共14页
  • 作者单位

    Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University, Xi’an, China;

    Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University, Xi’an, China;

    State Key Laboratory of Integrated Services Networks, School of Electronic Engineering, Xidian University, Xi’an, China;

    Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University, Xi’an, China;

    Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University, Xi’an, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature extraction; Training; Image reconstruction; Testing; Principal component analysis; Image resolution; Machine learning;

    机译:特征提取;训练;图像重建;测试;主成分分析;图像分辨率;机器学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号