首页> 外文期刊>IEEE Transactions on Image Processing >Object Classification With Joint Projection and Low-Rank Dictionary Learning
【24h】

Object Classification With Joint Projection and Low-Rank Dictionary Learning

机译:联合投影和低秩字典学习的目标分类

获取原文
获取原文并翻译 | 示例

摘要

For an object classification system, the most critical obstacles toward real-world applications are often caused by large intra-class variability, arising from different lightings, occlusion, and corruption, in limited sample sets. Most methods in the literature would fail when the training samples are heavily occluded, corrupted or have significant illumination or viewpoint variations. Besides, most of the existing methods and especially deep learning-based methods, need large training sets to achieve a satisfactory recognition performance. Although using the pre-trained network on a generic large-scale data set and fine-tune it to the small-sized target data set is a widely used technique, this would not help when the content of base and target data sets are very different. To address these issues simultaneously, we propose a joint projection and low-rank dictionary learning method using dual graph constraints. Specifically, a structured class-specific dictionary is learned in the low-dimensional space, and the discrimination is further improved by imposing a graph constraint on the coding coefficients, that maximizes the intra-class compactness and inter-class separability. We enforce structural incoherence and low-rank constraints on sub-dictionaries to reduce the redundancy among them, and also make them robust to variations and outliers. To preserve the intrinsic structure of data, we introduce a supervised neighborhood graph into the framework to make the proposed method robust to small-sized and high-dimensional data sets. Experimental results on several benchmark data sets verify the superior performance of our method for object classification of small-sized data sets, which include a considerable amount of different kinds of variation, and may have high-dimensional feature vectors.
机译:对于对象分类系统,现实世界应用中最关键的障碍通常是由类别内较大的可变性引起的,这些可变性是由有限的样本集中的不同光照,遮挡和损坏引起的。当训练样本被严重遮挡,损坏或光照或视点变化很大时,文献中的大多数方法将失败。此外,大多数现有方法,尤其是基于深度学习的方法,都需要大量的训练集才能获得令人满意的识别性能。尽管在通用的大型数据集上使用预训练网络并将其微调为小型目标数据集是一种广泛使用的技术,但是当基础数据集和目标数据集的内容非常不同时,这将无济于事。为了同时解决这些问题,我们提出了一种使用双图约束的联合投影和低秩字典学习方法。具体地,在低维空间中学习特定的结构化类别专用字典,并且通过在编码系数上施加图约束来进一步改善区分性,这最大化了类别内紧凑性和类别间可分离性。我们对子词典实施结构上的不一致和低等级限制,以减少它们之间的冗余,并使其对变体和异常值具有鲁棒性。为了保留数据的固有结构,我们在框架中引入了监督邻域图,以使该方法对小型和高维数据集具有鲁棒性。在几个基准数据集上的实验结果证明了我们的方法对小型数据集的对象分类的优越性能,该方法包括大量的各种变化,并且可能具有高维特征向量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号