首页> 外文期刊>IEEE Transactions on Image Processing >Dissecting and Reassembling Color Correction Algorithms for Image Stitching
【24h】

Dissecting and Reassembling Color Correction Algorithms for Image Stitching

机译:剖析和重新组装用于图像拼接的色彩校正算法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new compositional framework for classifying color correction methods according to their two main computational units. The framework was used to dissect fifteen among the best color correction algorithms and the computational units so derived, with the addition of four new units specifically designed for this work, were then reassembled in a combinatorial way to originate about one hundred distinct color correction methods, most of which never considered before. The above color correction methods were tested on three different existing datasets, including both real and artificial color transformations, plus a novel dataset of real image pairs categorized according to the kind of color alterations induced by specific acquisition setups. Differently from previous evaluations, special emphasis was given to effectiveness in real world applications, such as image mosaicing and stitching, where robustness with respect to strong image misalignments and light scattering effects is required. Experimental evidence is provided for the first time in terms of the most recent perceptual image quality metrics, which are known to be the closest to human judgment. Comparative results show that combinations of the new computational units are the most effective for real stitching scenarios, regardless of the specific source of color alteration. On the other hand, in the case of accurate image alignment and artificial color alterations, the best performing methods either use one of the new computational units, or are made up of fresh combinations of existing units.
机译:本文介绍了一种根据色彩校正方法的两个主要计算单元对色彩校正方法进行分类的新构图框架。该框架用于剖析最佳色彩校正算法中的15种,并由此得出的计算单位,再加上为此工作专门设计的四个新单位,然后以组合方式重新组合,以产生约一百种不同的色彩校正方法,其中大多数从未考虑过。以上颜色校正方法在三个不同的现有数据集上进行了测试,包括实色和人工颜色转换,以及根据特定采集设置引起的颜色变化种类分类的新颖的实像对数据集。与以前的评估不同,在实际应用中特别强调了有效性,例如图像拼接和拼接,在这些应用中,需要针对强图像未对准和光散射效果的鲁棒性。首次根据最新的感知图像质量度量标准提供了实验证据,这些度量标准最接近人类的判断。比较结果表明,无论具体的颜色更改来源如何,新的计算单元的组合对于实际拼接场景都是最有效的。另一方面,在精确的图像对齐和人工颜色更改的情况下,性能最佳的方法要么使用新的计算单元之一,要么由现有单元的新鲜组合组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号