首页> 外文期刊>IEEE Transactions on Image Processing >Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images
【24h】

Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images

机译:高光谱图像的光谱空间尺度不变特征变换

获取原文
获取原文并翻译 | 示例

摘要

Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.
机译:光谱空间特征提取是高光谱图像处理中的重要任务。在本文中,我们提出了一种从高光谱图像中提取独特不变特征的新方法,用于在不同光谱条件下配准高光谱图像。光谱条件意味着使用不同的入射光,视角或使用不同的高光谱相机捕获图像。此外,光谱条件还包括形状相同但材质不同的物体的图像。这种方法称为频谱空间尺度不变特征变换(SS-SIFT),它同时探索频谱和空间维,以提取频谱和几何变换不变特征。与经典的SIFT算法相似,SS-SIFT由关键点检测和描述符构建步骤组成。从高斯空间尺度空间中提取关键点,并在将高斯3D差异应用于数据立方体后从极值中检测出关键点。通过探索光谱空间梯度幅度在其局部3D邻域中的分布,为每个关键点提出了两个描述符。 SS-SIFT方法的有效性在不同的光照条件,不同的几何投影以及使用两个具有不同光谱波长范围和分辨率的高光谱相机上采集的图像上得到了验证。实验结果表明,我们的方法为光谱空间图像匹配生成了鲁棒的不变特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号