首页> 外文期刊>IEEE Transactions on Image Processing >Multi-Temporal Scene Classification and Scene Change Detection With Correlation Based Fusion
【24h】

Multi-Temporal Scene Classification and Scene Change Detection With Correlation Based Fusion

机译:基于相关的融合的多时间场景分类和场景变化检测

获取原文
获取原文并翻译 | 示例

摘要

Classifying multi-temporal scene land-use categories and detecting their semantic scene-level changes for remote sensing imagery covering urban regions could straightly reflect the land-use transitions. Existing methods for scene change detection rarely focus on the temporal correlation of bi-temporal features, and are mainly evaluated on small scale scene change detection datasets. In this work, we proposed a CorrFusion module that fuses the highly correlated components in bi-temporal feature embeddings. We first extract the deep representations of the bi-temporal inputs with deep convolutional networks. Then the extracted features will be projected into a lower-dimensional space to extract the most correlated components and compute the instance-level correlation. The cross-temporal fusion will be performed based on the computed correlation in CorrFusion module. The final scene classification results are obtained with softmax layers. In the objective function, we introduced a new formulation to calculate the temporal correlation more efficiently and stably. The detailed derivation of backpropagation gradients for the proposed module is also given. Besides, we presented a much larger scale scene change detection dataset with more semantic categories and conducted extensive experiments on this dataset. The experimental results demonstrated that our proposed CorrFusion module could remarkably improve the multi-temporal scene classification and scene change detection results.
机译:分类多时间场景土地使用类别并检测覆盖城市地区覆盖城市地区的遥感图像的语义场景级别,可以直接反映土地使用过渡。现有场景变化检测方法很少专注于双时效特征的时间相关性,并且主要在小规模场景变化检测数据集上进行评估。在这项工作中,我们提出了一种ETURFUSUSION模块,其融合了双时态特征嵌入中的高度相关分量。我们首先用深卷积网络提取双时隙输入的深度表示。然后,提取的特征将投影到较低维空间中以提取最相关的组件并计算实例级相关性。跨时融合将基于CONTFUSUSUSCE模块中的计算相关性进行。使用Softmax层获得最终场景分类结果。在客观函数中,我们介绍了一种新的配方,以更有效且稳定地计算时间相关性。还给出了所提出模块的BackPropagation梯度的详细推导。此外,我们介绍了一个更大的比例变化检测数据集,具有更多语义类别,并在此数据集中进行了广泛的实验。实验结果表明,我们所提出的再版模块可以显着改善多时间场景分类和场景变化检测结果。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2021年第1期|1382-1394|共13页
  • 作者

    Lixiang Ru; Bo Du; Chen Wu;

  • 作者单位

    National Engineering Research Center for Multimedia Software School of Computer Science Institute of Artificial Intelligence Wuhan University Wuhan China;

    National Engineering Research Center for Multimedia Software School of Computer Science Institute of Artificial Intelligence Wuhan University Wuhan China;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature extraction; Correlation; Remote sensing; Semantics; Task analysis; Training; Spatial resolution;

    机译:特征提取;相关;遥感;语义;任务分析;培训;空间分辨率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号