首页> 外文期刊>IEEE Transactions on Image Processing >BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification
【24h】

BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification

机译:BSNet:Bi相似网络,用于几次细粒度的图像分类

获取原文
获取原文并翻译 | 示例

摘要

Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many tasks. Most of the metric-based methods assume a single similarity measure and thus obtain a single feature space. However, if samples can simultaneously be well classified via two distinct similarity measures, the samples within a class can distribute more compactly in a smaller feature space, producing more discriminative feature maps. Motivated by this, we propose a so-called Bi-Similarity Network (BSNet) that consists of a single embedding module and a bi-similarity module of two similarity measures. After the support images and the query images pass through the convolution-based embedding module, the bi-similarity module learns feature maps according to two similarity measures of diverse characteristics. In this way, the model is enabled to learn more discriminative and less similarity-biased features from few shots of fine-grained images, such that the model generalization ability can be significantly improved. Through extensive experiments by slightly modifying established metric/similarity based networks, we show that the proposed approach produces a substantial improvement on several fine-grained image benchmark datasets. Codes are available at: https://github.com/PRIS-CV/BSNet.
机译:对于细粒度的图像分类来说,很少拍摄的学习在计算机视觉中获得了最近的关注。在几次拍摄学习的方法中,由于简单和有效性,基于度量的方法在许多任务中是有利的最先进的。基于度量的大多数方法采用单个相似度量,从而获得单个特征空间。然而,如果样本可以通过两个不同的相似度措施同时分类,则类内部的样本可以在较小的特征空间中更紧凑地分布,产生更多辨别特征图。由此激励,我们提出了一个所谓的双相相似网络(BSNet),该网络由单个嵌入模块和两个相似度量的双相相似模块组成。在支持图像和查询图像通过基于卷积的嵌入模块之后,双相相似性模块根据不同特征的两个相似度测量来学习特征图。以这种方式,该模型能够从小粒度图像的较少射击中学习更多识别性和较少的相似性偏置特征,使得可以显着改善模型泛化能力。通过略微修改已建立的公制/相似性的网络,我们表明所提出的方法对几个细粒度的图像基准数据集进行了大量改进。代码可用于:https://github.com/pris-cv/bsnet。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号