首页> 外文期刊>IEEE Transactions on Image Processing >Robust Online Tracking via Contrastive Spatio-Temporal Aware Network
【24h】

Robust Online Tracking via Contrastive Spatio-Temporal Aware Network

机译:通过对比的时空意识网络强大的在线跟踪

获取原文
获取原文并翻译 | 示例

摘要

Existing tracking-by-detection approaches using deep features have achieved promising results in recent years. However, these methods mainly exploit feature representations learned from individual static frames, thus paying little attention to the temporal smoothness between frames. This easily leads trackers to drift in the presence of large appearance variations and occlusions. To address this issue, we propose a two-stream network to learn discriminative spatio-temporal feature representations to represent the target objects. The proposed network consists of a Spatial ConvNet module and a Temporal ConvNet module. Specifically, the Spatial ConvNet adopts 2D convolutions to encode the target-specific appearance in static frames, while the Temporal ConvNet models the temporal appearance variations using 3D convolutions and learns consistent temporal patterns in a short video clip. Then we propose a proposal refinement module to adjust the predicted bounding box, which can make the target localizing outputs to be more consistent in video sequences. In addition, to improve the model adaptation during online update, we propose a contrastive online hard example mining (OHEM) strategy, which selects hard negative samples and enforces them to be embedded in a more discriminative feature space. Extensive experiments conducted on the OTB, Temple Color and VOT benchmarks demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.
机译:近年来,使用深度特征的现有跟踪方法取得了有希望的结果。但是,这些方法主要利用从各个静态帧中学到的特征表示,从而重视帧之间的时间平滑。这易于引导跟踪器在存在大的外观变化和闭塞的情况下漂移。为了解决这个问题,我们提出了一个双流网络来学习判别的时空特征表示来表示目标对象。所提出的网络由空间ConvNet模块和时间图组成。具体而言,空间GRANNET采用2D卷积来对静态帧中的目标特定外观进行编码,而时间转接使用3D卷积模拟时间外观变化,并在短视频剪辑中学习一致的时间模式。然后,我们提出了一个提出的细化模块来调整预测边界框,这可以使目标定位输出在视频序列中更一致。此外,为了改善在线更新期间的模型适应,我们提出了一种对比的在线硬示例挖掘(OHEM)策略,其选择硬阴性样本,并强制执行它们以嵌入更差异的特征空间。在OTB,Temple Color和Vot基准上进行的广泛实验表明,该算法对最先进的方法表现有利。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2021年第1期|1989-2002|共14页
  • 作者单位

    State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China;

    State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China;

    State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China;

    MoE Key Laboratory of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China;

    Shenzhen Research Institute of Big Data The Chinese University of Hong Kong at Shenzhen Shenzhen China;

    State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Target tracking; Proposals; Visualization; Task analysis; Detectors; Three-dimensional displays; Object tracking;

    机译:目标跟踪;提案;可视化;任务分析;探测器;三维显示器;对象跟踪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号