首页> 外文期刊>IEEE Transactions on Image Processing >Self-Supervised Deep Correlation Tracking
【24h】

Self-Supervised Deep Correlation Tracking

机译:自我监督的深度相关性跟踪

获取原文
获取原文并翻译 | 示例

摘要

The training of a feature extraction network typically requires abundant manually annotated training samples, making this a time-consuming and costly process. Accordingly, we propose an effective self-supervised learning-based tracker in a deep correlation framework (named: self-SDCT). Motivated by the forward-backward tracking consistency of a robust tracker, we propose a multi-cycle consistency loss as self-supervised information for learning feature extraction network from adjacent video frames. At the training stage, we generate pseudo-labels of consecutive video frames by forward-backward prediction under a Siamese correlation tracking framework and utilize the proposed multi-cycle consistency loss to learn a feature extraction network. Furthermore, we propose a similarity dropout strategy to enable some low-quality training sample pairs to be dropped and also adopt a cycle trajectory consistency loss in each sample pair to improve the training loss function. At the tracking stage, we employ the pre-trained feature extraction network to extract features and utilize a Siamese correlation tracking framework to locate the target using forward tracking alone. Extensive experimental results indicate that the proposed self-supervised deep correlation tracker (self-SDCT) achieves competitive tracking performance contrasted to state-of-the-art supervised and unsupervised tracking methods on standard evaluation benchmarks.
机译:特征提取网络的训练通常需要丰富的手动注释的训练样本,这使得这种耗时和昂贵的过程。因此,我们提出了一种在深度相关框架中的一种有效的自我监督的学习追踪器(命名为:自我SDCT)。由强大的跟踪器的前后跟踪一致性激励,我们提出了一种多周期一致性损失作为来自相邻视频帧的学习特征提取网络的自我监控信息。在训练阶段,我们在暹罗相关跟踪框架下通过前后预测生成连续视频帧的伪标签,并利用所提出的多周期一致性丢失来学习特征提取网络。此外,我们提出了一种相似性辍学策略,以使一些低质量的训练样本对被丢弃,并且还采用每个样本对中的循环轨迹一致性损失,以改善训练损失功能。在跟踪阶段,我们采用预先训练的特征提取网络来提取特征,并利用暹罗相关跟踪框架来定位目标,单独使用正向跟踪。广泛的实验结果表明,拟议的自我监督的深层相关跟踪仪(自我SDCT)实现了与标准评估基准的最先进的监督和无监督跟踪方法对比的竞争性跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号