首页> 外文期刊>IEEE Transactions on Image Processing >Low-Rank Constrained Super-Resolution for Mixed-Resolution Multiview Video
【24h】

Low-Rank Constrained Super-Resolution for Mixed-Resolution Multiview Video

机译:用于混合分辨率多视图视频的低级别约束超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Multiview video allows for simultaneously presenting dynamic imaging from multiple viewpoints, enabling a broad range of immersive applications. This paper proposes a novel super-resolution (SR) approach to mixed-resolution (MR) multiview video, whereby the low-resolution (LR) videos produced by MR camera setups are up-sampled based on the neighboring HR videos. Our solution analyzes the statistical correlation of different resolutions between multiple views, and introduces a low-rank prior based SR optimization framework using local linear embedding and weighted nuclear norm minimization. The target HR patch is reconstructed by learning texture details from the neighboring HR camera views using local linear embedding. A low-rank constrained patch optimization solution is introduced to effectively restrain visual artifacts and the ADMM framework is used to solve the resulting optimization problem. Comprehensive experiments including objective and subjective test metrics demonstrate that the proposed method outperforms the state-of-the-art SR methods for MR multiview video.
机译:多视图视频允许同时从多个视点呈现动态成像,从而实现广泛的沉浸式应用。本文提出了一种新颖的超分辨率(SR)对混合分辨率(MR)MultiView视频的方法,由此基于相邻的HR视频对MR MER Camera Setups生产的低分辨率(LR)视频。我们的解决方案分析了多种视图之间不同分辨率的统计相关性,并使用本地线性嵌入和加权核规范最小化引入低级先前的SR优化框架。通过使用本地线性嵌入从相邻的HR相机视图中学习纹理细节来重建目标HR补丁。引入低级别约束的贴片优化解决方案以有效地抑制视觉伪影,并且ADMM框架用于解决所产生的优化问题。包括目标和主观测试指标在内的综合实验表明,所提出的方法优于Mr Multiview视频的最先进的SR方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号