首页> 外文期刊>IEEE Transactions on Image Processing >Personal Fixations-Based Object Segmentation With Object Localization and Boundary Preservation
【24h】

Personal Fixations-Based Object Segmentation With Object Localization and Boundary Preservation

机译:基于个人固定的对象分割,具有对象本地化和边界保存

获取原文
获取原文并翻译 | 示例

摘要

As a natural way for human-computer interaction, fixation provides a promising solution for interactive image segmentation. In this paper, we focus on Personal Fixations-based Object Segmentation (PFOS) to address issues in previous studies, such as the lack of appropriate dataset and the ambiguity in fixations-based interaction. In particular, we first construct a new PFOS dataset by carefully collecting pixel-level binary annotation data over an existing fixation prediction dataset, such dataset is expected to greatly facilitate the study along the line. Then, considering characteristics of personal fixations, we propose a novel network based on Object Localization and Boundary Preservation (OLBP) to segment the gazed objects. Specifically, the OLBP network utilizes an Object Localization Module (OLM) to analyze personal fixations and locates the gazed objects based on the interpretation. Then, a Boundary Preservation Module (BPM) is designed to introduce additional boundary information to guard the completeness of the gazed objects. Moreover, OLBP is organized in the mixed bottom-up and top-down manner with multiple types of deep supervision. Extensive experiments on the constructed PFOS dataset show the superiority of the proposed OLBP network over 17 state-of-the-art methods, and demonstrate the effectiveness of the proposed OLM and BPM components. The constructed PFOS dataset and the proposed OLBP network are available at https://github.com/MathLee/OLBPNet4PFOS .
机译:作为人机交互的自然方式,固定为交互式图像分割提供了有希望的解决方案。在本文中,我们专注于基于个人固定的对象分段(PFO),以解决以前的研究中的问题,例如缺乏适当的数据集和基于固定的互动中的模糊性。特别地,我们首先通过在现有的固定预测数据集上仔细收集像素级二进制注释数据来构造新的PFOS数据集,这些数据集预计将大大促进沿线的研究。然后,考虑个人固定的特征,我们提出了一种基于对象本地化和边界保存(OLBP)的新型网络,段分段凝视对象。具体地,OLBP网络利用对象本地化模块(OLM)来分析个人固定并基于解释找到凝视对象。然后,设计边界保存模块(BPM)以引入额外的边界信息以保护凝视物体的完整性。此外,OLBP以混合的自下而向下和自上而下的方式组织,具有多种类型的深度监控。构造的PFOS数据集的广泛实验显示了17种最先进的方法所提出的OLBP网络的优越性,并证明了所提出的OLM和BPM组件的有效性。构造的PFOS数据集和所提出的OLBP网络可在 https://github.com/mathlee/olbpnet4pfos

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2021年第1期|1461-1475|共15页
  • 作者单位

    Shanghai Institute for Advanced Communication and Data Science Shanghai University Shanghai China;

    Shanghai Institute for Advanced Communication and Data Science Shanghai University Shanghai China;

    School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China;

    Shanghai Institute for Advanced Communication and Data Science Shanghai University Shanghai China;

    Shanghai Institute for Advanced Communication and Data Science Shanghai University Shanghai China;

    Shanghai Institute for Advanced Communication and Data Science Shanghai University Shanghai China;

    Shanghai Institute for Advanced Communication and Data Science Shanghai University Shanghai China;

    Stony Brook University Stony Brook NY USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image segmentation; Object segmentation; Task analysis; Visualization; Visual systems; Measurement; Image edge detection;

    机译:图像分割;对象分割;任务分析;可视化;视觉系统;测量;图像边缘检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号