首页> 外文期刊>IEEE Transactions on Image Processing >The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification
【24h】

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification

机译:魔鬼在通道中:用于细粒度的图像分类的相互信道损失

获取原文
获取原文并翻译 | 示例

摘要

The key to solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to learn part-level discriminate feature representations. In this paper, we show that it is possible to cultivate subtle details without the need for overly complicated network designs or training mechanisms - a single loss is all it takes. The main trick lies with how we delve into individual feature channels early on, as opposed to the convention of starting from a consolidated feature map. The proposed loss function, termed as mutual-channel loss (MC-Loss), consists of two channel-specific components: a discriminality component and a diversity component. The discriminality component forces all feature channels belonging to the same class to be discriminative, through a novel channel-wise attention mechanism. The diversity component additionally constraints channels so that they become mutually exclusive across the spatial dimension. The end result is therefore a set of feature channels, each of which reflects different locally discriminative regions for a specific class. The MC-Loss can be trained end-to-end, without the need for any bounding-box/part annotations, and yields highly discriminative regions during inference. Experimental results show our MC-Loss when implemented on top of common base networks can achieve state-of-the-art performance on all four fine-grained categorization datasets (CUB-Birds, FGVC-Aircraft, Flowers-102, and Stanford Cars). Ablative studies further demonstrate the superiority of the MC-Loss when compared with other recently proposed general-purpose losses for visual classification, on two different base networks. Codes are available at: https://github.com/dongliangchang/Mutual-Channel-Loss.
机译:解决细粒度图像分类的关键是发现与微妙的视觉特征相对应的鉴别和局部区域。已经进行了大踏步发展,具有复杂的网络,专门用于学习部分级别辨别特征表示。在本文中,我们表明,可以在不需要过度复杂的网络设计或培训机制的情况下培养细微细节 - 这是一切损失。主要诀窍在于我们如何早期深入研究单个特征频道,而不是从统一的特征图开始的公约。所提出的损失函数称为相互信道丢失(MC损失)由两个通道特定的组件组成:歧视分量和多样性分量。鉴别的分量强制属于同一类的所有特征频道通过新的渠道 - 明智的注意机制来辨别。多样性分量另外约束通道,使得它们在空间维度上互相排斥。因此,最终结果是一组特征频道,每个特征频道反映了特定类的不同局部判别区域。 MC损耗可以训练结束到底,而无需任何限定箱/部分注释,并在推理期间产生高度辨别的区域。实验结果表明我们在公共基础网络上实施时的MC损失可以实现所有四个细粒度分类数据集(幼鸽,FGVC-飞机,鲜花-102和斯坦福汽车)实现最先进的性能。烧蚀研究进一步展示了与其他最近提出的视觉分类的通用损失相比,在两个不同的基础网络上相比,MC损失的优势。代码可用:https://github.com/dongliangchang/mutual-channel-loss。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2020年第2020期|4683-4695|共13页
  • 作者单位

    Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;

    Univ Surrey Ctr Vis Speech & Signal Proc Guildford GU2 7XH Surrey England;

    Lanzhou Univ Technol Sch Comp & Commun Lanzhou 730050 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;

    Univ Surrey Ctr Vis Speech & Signal Proc Guildford GU2 7XH Surrey England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature extraction; Training; Visualization; Automobiles; Task analysis; Data mining; Manuals; Fine-grained image classification; deep learning; loss function; mutual channel;

    机译:特征提取;培训;可视化;汽车;任务分析;数据挖掘;手册;细粒度的图像分类;深度学习;损失功能;相互频道;相互频道;相互频道;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号