机译:魔鬼在通道中:用于细粒度的图像分类的相互信道损失
Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;
Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;
Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;
Univ Surrey Ctr Vis Speech & Signal Proc Guildford GU2 7XH Surrey England;
Lanzhou Univ Technol Sch Comp & Commun Lanzhou 730050 Peoples R China;
Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;
Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;
Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China;
Univ Surrey Ctr Vis Speech & Signal Proc Guildford GU2 7XH Surrey England;
Feature extraction; Training; Visualization; Automobiles; Task analysis; Data mining; Manuals; Fine-grained image classification; deep learning; loss function; mutual channel;
机译:具有对抗性数据增强的多任务学习模型,用于对细粒度图像进行分类
机译:乳腺癌细胞病理学图像的细粒度分类和分级多任务深度学习
机译:基于多维关注机制的PET和CT图像细粒肺癌分类
机译:CC损耗:图像分类的信道相关损耗
机译:细粒度图像分类中的特征工程。
机译:探索细粒度图像分类的错误分类信息
机译:魔鬼在通道中:用于细粒度的图像分类的相互信道损失