首页> 外文期刊>IEEE Transactions on Image Processing >RGB-T Salient Object Detection via Fusing Multi-Level CNN Features
【24h】

RGB-T Salient Object Detection via Fusing Multi-Level CNN Features

机译:RGB-T通过熔断多级CNN功能检测

获取原文
获取原文并翻译 | 示例

摘要

RGB-induced salient object detection has recently witnessed substantial progress, which is attributed to the superior feature learning capability of deep convolutional neural networks (CNNs). However, such detections suffer from challenging scenarios characterized by cluttered backgrounds, low-light conditions and variations in illumination. Instead of improving RGB based saliency detection, this paper takes advantage of the complementary benefits of RGB and thermal infrared images. Specifically, we propose a novel end-to-end network for multi-modal salient object detection, which turns the challenge of RGB-T saliency detection to a CNN feature fusion problem. To this end, a backbone network (e.g., VGG-16) is first adopted to extract the coarse features from each RGB or thermal infrared image individually, and then several adjacent-depth feature combination (ADFC) modules are designed to extract multi-level refined features for each single-modal input image, considering that features captured at different depths differ in semantic information and visual details. Subsequently, a multi-branch group fusion (MGF) module is employed to capture the cross-modal features by fusing those features from ADFC modules for a RGB-T image pair at each level. Finally, a joint attention guided bi-directional message passing (JABMP) module undertakes the task of saliency prediction via integrating the multi-level fused features from MGF modules. Experimental results on several public RGB-T salient object detection datasets demonstrate the superiorities of our proposed algorithm over the state-of-the-art approaches, especially under challenging conditions, such as poor illumination, complex background and low contrast.
机译:RGB引起的突出物体检测最近见证了实质性进展,这归因于深度卷积神经网络(CNNS)的优越特征学习能力。然而,这种检测遭受挑战性的情况,其特征是由杂乱的背景,低光条件和照明的变化。本文利用RGB和热红外图像的互补益处而不是提高基于RGB的显着性检测。具体地,我们提出了一种用于多模态突出物体检测的新型端到端网络,其将RGB-T显着性检测的挑战变为CNN特征融合问题。为此,首先采用骨干网络(例如,VGG-16)以单独采用来自每个RGB或热红外图像的粗特征,然后设计了几个相邻深度特征组合(ADFC)模块以提取多级别考虑到在不同深度捕获的功能在语义信息和视觉细节中捕获的功能,对每个单模输入图像的精细特征。随后,采用多分支组融合(MGF)模块来捕获来自每个级别的RGB-T图像对的ADFC模块的那些特征来捕获跨模型特征。最后,通过将来自MGF模块的多级融合功能集成,通过(JABMP)模块的关注引导的双向消息(JABMP)模块的任务承担了显着性预测的任务。关于几个公共RGB-T突出物体检测数据集的实验结果证明了我们所提出的算法在最先进的方法中的优势,尤其是在挑战性条件下,例如较差的照明,复杂的背景和低对比度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号