首页> 外文期刊>IEEE Transactions on Image Processing >Needles in a Haystack: Tracking City-Scale Moving Vehicles From Continuously Moving Satellite
【24h】

Needles in a Haystack: Tracking City-Scale Moving Vehicles From Continuously Moving Satellite

机译:大海捞针中的针:跟踪城市规模的移动车辆从不断移动的卫星

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the satellite videos have been captured by moving satellite platforms. In contrast to consumers, movies, and common surveillance videos, satellite videos can record the snapshots of city-scale scenes. In a broad field-of-view of satellite videos, each moving target would be very tiny and usually composed of several pixels in frames. Even worse, the noise signals also exist in the video frames, and the background of the video frames subpixel-level and uneven moving thanks to the motion of satellites. We argue that it is a novel type of computer vision task since previous technologies are unable to detect such tiny moving vehicles efficiently. This paper proposes a novel framework that can identify small moving vehicles in satellite videos. In particular, we offer a novel detecting algorithm based on the local noise modeling. We differentiate the potential vehicle targets from noise patterns by an exponential probability distribution. Subsequently, a multi-morphological-cue based discrimination strategy is designed to distinguish correct vehicle targets from the existing noises further. Another significant contribution is to introduce a series of evaluation protocols to measure the performance of tiny moving vehicle detection systematically. We annotate satellite videos manually to test our algorithms under different evaluation criterions. The proposed algorithm is also compared with the state-of-the-art baselines, which demonstrates the advantages of our framework over the benchmarks. Besides, the dataset would be downloaded from http://first.authour.github.com.
机译:近年来,卫星视频已被移动卫星平台捕获。与消费者,电影和常见监视视频相比,卫星视频可以记录城市规模场景的快照。在卫星视频的广泛视野中,每个移动目标将非常小,并且通常由帧中的几个像素组成。甚至更差,噪声信号也存在于视频帧中,以及视频帧子像素级的背景,并且由于卫星的运动,因此视频框架级级和不均匀的移动。我们认为这是一种新型的计算机视觉任务,因为以前的技术无法有效地检测这种微小的移动车辆。本文提出了一种新颖的框架,可以识别卫星视频中的小型移动车辆。特别是,我们提供了一种基于局部噪声建模的新型检测算法。我们通过指数概率分布将潜在的车辆目标与噪声模式区分开来。随后,基于多形态学 - 提示的歧视策略旨在进一步区分从现有的噪声中的正确的车辆目标。另一种重要贡献是引入一系列评估协议,以系统地测量微小移动车辆检测的性能。我们手动注释卫星视频以在不同的评估标准下测试我们的算法。该算法也与最先进的基线进行了比较,这表明我们在基准测试中的框架的优势。此外,数据集将从 http://first.authour.github.com下载

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号